5,883 research outputs found

    Creating maximally entangled atomic states in a Bose-Einstein condensate

    Full text link
    We propose a protocol to create maximally entangled pairs, triplets, quartiles, and other clusters of Bose condensed atoms starting from a condensate in the Mott insulator state. The essential element is to drive single atom Raman transitions using laser pulses. Our scheme is simple, efficient, and can be readily applied to the recent experimental system as reported by Greiner {\it et al.} [ Nature {\bf 413}, 44 (2002)].Comment: 4 pages, 2 figures. revised version as to be publishe

    Deformation Energy Minima at Finite Mass Asymmetry

    Get PDF
    A very general saddle point nuclear shape may be found as a solution of an integro-differential equation without giving apriori any shape parametrization. By introducing phenomenological shell corrections one obtains minima of deformation energy for binary fission of parent nuclei at a finite (non-zero) mass asymmetry. Results are presented for reflection asymmetric saddle point shapes of thorium and uranium even-mass isotopes with A=226-238 and A=230-238 respectively.Comment: 5 pages, 2 Postscript figures, REVTeX, Version 4.

    Monte Carlo aided design of the inner muon veto detectors for the Double Chooz experiment

    Full text link
    The Double Chooz neutrino experiment aims to measure the last unknown neutrino mixing angle theta_13 using two identical detectors positioned at sites both near and far from the reactor cores of the Chooz nuclear power plant. To suppress correlated background induced by cosmic muons in the detectors, they are protected by veto detector systems. One of these systems is the inner muon veto. It is an active liquid scintillator based detector and instrumented with encapsulated photomultiplier tubes. In this paper we describe the Monte Carlo aided design process of the inner muon veto, that resulted in a detector configuration with 78 PMTs yielding an efficiency of 99.978 +- 0.004% for rejecting muon events and an efficiency of >98.98% for rejecting correlated events induced by muons. A veto detector of this design is currently used at the far detector site and will be built and incorporated as the muon identification system at the near site of the Double Chooz experiment

    Parton Production Via Vacuum Polarization

    Full text link
    We discuss the production mechanism of partons via vacuum polarization during the very early, gluon dominated phase of an ultrarelativistic heavy-ion collision in the framework of the background field method of quantum chromodynamics.Comment: 3 pages, Latex, 3 figures (eps), to be published in JPhysG, SQM2001 proceeding

    The effect of a velocity barrier on the ballistic transport of Dirac fermions

    Full text link
    We propose a novel way to manipulate the transport properties of massless Dirac fermions by using velocity barriers, defining the region in which the Fermi velocity, vFv_{F}, has a value that differs from the one in the surrounding background. The idea is based on the fact that when waves travel accross different media, there are boundary conditions that must be satisfied, giving rise to Snell's-like laws. We find that the transmission through a velocity barrier is highly anisotropic, and that perfect transmission always occurs at normal incidence. When vFv_{F} in the barrier is larger that the velocity outside the barrier, we find that a critical transmission angle exists, a Brewster-like angle for massless Dirac electrons.Comment: 4.3 pages, 5 figure

    Critical Review Of Quark Gluon Plasma Signals

    Get PDF
    Compelling evidence for a new form of matter has been claimed to be formed in Pb+Pb collisions at SPS. We critically review two suggested signatures for this new state of matter: First the suppression of the J/Ψ\Psi, which should be strongly suppressed in the QGP by two different mechanisms, the color-screening and the QCD-photoeffect. Secondly the measured particle, in particular strange hadronic, ratios might signal the freeze-out from a quark-gluon phase.Comment: 7 pages 6 figures, Contribution to the Proceedings of CRIS 2000, 3rd Catania Relativistic Ion Studies, Acicastello, Italy, May 22-26, 200

    Proof that the Hydrogen-antihydrogen Molecule is Unstable

    Full text link
    In the framework of nonrelativistic quantum mechanics we derive a necessary condition for four Coulomb charges (m1+,m2,m3+,m4)(m_{1}^+, m_{2}^-, m_{3}^+, m_{4}^-), where all masses are assumed finite, to form the stable system. The obtained stability condition is physical and is expressed through the required minimal ratio of Jacobi masses. In particular this provides the rigorous proof that the hydrogen-antihydrogen molecule is unstable. This is the first result of this sort for four particles.Comment: Submitted to Phys.Rev.Let

    Endpoint thermodynamics of an atomic Fermi gas subject to a Feshbach resonance

    Full text link
    The entropy and kinetic, potential, and interaction energies of an atomic Fermi gas in a trap are studied under the assumption of thermal equilibrium for finite temperature. A Feshbach resonance can cause the fermions to pair into diatomic molecules. The entropy and energies of mixtures of such molecules with unpaired atoms are calculated, in relation to recent experiments on molecular Bose-Einstein condensates produced in this manner. It is shown that, starting with a Fermi gas of temperature T=0.1TF0T= 0.1 T_F^0, where TF0T_F^0 is the non-interacting Fermi temperature, an extremely cold degenerate Fermi gas of temperature T0.01TF0T \lesssim 0.01 T_F^0 may be produced without further evaporative cooling. This requires adiabatic passage of the resonance, subsequent sudden removal of unpaired atoms, and adiabatic return. We also calculate the ratio of the interaction energy to the kinetic energy, a straightforward experimental signal which may be used to determine the temperature of the atoms and indicate condensation of the molecules.Comment: 12 pages, 5 figure

    A New Study of the Transition to Uniform Nuclear Matter in Neutron Stars and Supernovae

    Full text link
    A comprehensive microscopic study of the properties of bulk matter at densities just below nuclear saturation ρs=2.51014\rho_s = 2.5 \sim 10^{14} g cm3^{-3}, zero and finite temperature and high neutron fraction, is outlined, and preliminary results presented. Such matter is expected to exist in the inner crust of neutron stars and during the core collapse of massive stars with $M \gtrsim 8M_{\odot}Comment: 4 pages, 2 figures. Participant Contribution at the ``Dense Matter in Heavy Ion Collisions and Astrophysics" Summer School, JINR, Dubna, Aug. 21 - Sept. 1, 2006. To be published in PEPAN letter
    corecore