310 research outputs found
Charmonium mass splittings at the physical point
We present results from an ongoing study of mass splittings of the lowest
lying states in the charmonium system. We use clover valence charm quarks in
the Fermilab interpretation, an improved staggered (asqtad) action for sea
quarks, and the one-loop, tadpole-improved gauge action for gluons. This study
includes five lattice spacings, 0.15, 0.12, 0.09, 0.06, and 0.045 fm, with two
sets of degenerate up- and down-quark masses for most spacings. We use an
enlarged set of interpolation operators and a variational analysis that permits
study of various low-lying excited states. The masses of the sea quarks and
charm valence quark are adjusted to their physical values. This large set of
gauge configurations allows us to extrapolate results to the continuum physical
point and test the methodology.Comment: 7 pp, 6 figs, Lattice 201
The locality of the fourth root of staggered fermion determinant in the interacting case
The fourth root approximation in LQCD simulations with dynamical staggered
fermions requires justification. We test its validity numerically in the
interacting theory in a renormalization group framework.Comment: 6 pages, Talk presented at Lattice 2005 (Machines and Algorithms
Possible Pseudogap Phase in QCD
Thermal pion fluctuations, in principle, can completely disorder the phase of
the quark condensate and thus restore chiral symmetry. If this happens before
the quark condensate melts, strongly-interacting matter will be in the
pseudogap state just above the chiral phase transition. The quark condensate
does not vanish locally and quarks acquire constituent masses in the pseudogap
phase, despite chiral symmetry is restored.Comment: 8 pages, 1 figure; v2: references added; v3: argumerts modified; v4:
minor changes; v5: a misprint correcte
The QCD equation of state with asqtad staggered fermions
We report on our result for the equation of state (EOS) with a Symanzik
improved gauge action and the asqtad improved staggered fermion action at
and 6. In our dynamical simulations with 2+1 flavors we use the inexact
R algorithm and here we estimate the finite step-size systematic error on the
EOS. Finally we discuss the non-zero chemical potential extension of the EOS
and give some preliminary results.Comment: 7 pages, 6 figures, presented at Lattice2006(High Temperature and
Density), to appear in Proceedings of Scienc
Influence of a temperature-dependent shear viscosity on the azimuthal asymmetries of transverse momentum spectra in ultrarelativistic heavy-ion collisions
We study the influence of a temperature-dependent shear viscosity over
entropy density ratio , different shear relaxation times , as
well as different initial conditions on the transverse momentum spectra of
charged hadrons and identified particles. We investigate the azimuthal flow
asymmetries as a function of both collision energy and centrality. The elliptic
flow coefficient turns out to be dominated by the hadronic viscosity at RHIC
energies. Only at higher collision energies the impact of the viscosity in the
QGP phase is visible in the flow asymmetries. Nevertheless, the shear viscosity
near the QCD transition region has the largest impact on the collective flow of
the system. We also find that the centrality dependence of the elliptic flow is
sensitive to the temperature dependence of .Comment: 13 pages, 20 figure
The equation of state with nonzero chemical potential for 2+1 flavors
We present results for the QCD equation of state with nonzero chemical
potential using the Taylor expansion method with terms up to sixth order in the
expansion. Our calculations are performed on asqtad 2+1 quark flavor lattices
at .Comment: Talk given at the XXV International Symposium on Lattice Field
Theory, July 30-4 August 2007, Regensburg, German
- …