310 research outputs found

    Charmonium mass splittings at the physical point

    Full text link
    We present results from an ongoing study of mass splittings of the lowest lying states in the charmonium system. We use clover valence charm quarks in the Fermilab interpretation, an improved staggered (asqtad) action for sea quarks, and the one-loop, tadpole-improved gauge action for gluons. This study includes five lattice spacings, 0.15, 0.12, 0.09, 0.06, and 0.045 fm, with two sets of degenerate up- and down-quark masses for most spacings. We use an enlarged set of interpolation operators and a variational analysis that permits study of various low-lying excited states. The masses of the sea quarks and charm valence quark are adjusted to their physical values. This large set of gauge configurations allows us to extrapolate results to the continuum physical point and test the methodology.Comment: 7 pp, 6 figs, Lattice 201

    The locality of the fourth root of staggered fermion determinant in the interacting case

    Full text link
    The fourth root approximation in LQCD simulations with dynamical staggered fermions requires justification. We test its validity numerically in the interacting theory in a renormalization group framework.Comment: 6 pages, Talk presented at Lattice 2005 (Machines and Algorithms

    Possible Pseudogap Phase in QCD

    Get PDF
    Thermal pion fluctuations, in principle, can completely disorder the phase of the quark condensate and thus restore chiral symmetry. If this happens before the quark condensate melts, strongly-interacting matter will be in the pseudogap state just above the chiral phase transition. The quark condensate does not vanish locally and quarks acquire constituent masses in the pseudogap phase, despite chiral symmetry is restored.Comment: 8 pages, 1 figure; v2: references added; v3: argumerts modified; v4: minor changes; v5: a misprint correcte

    The QCD equation of state with asqtad staggered fermions

    Get PDF
    We report on our result for the equation of state (EOS) with a Symanzik improved gauge action and the asqtad improved staggered fermion action at Nt=4N_t=4 and 6. In our dynamical simulations with 2+1 flavors we use the inexact R algorithm and here we estimate the finite step-size systematic error on the EOS. Finally we discuss the non-zero chemical potential extension of the EOS and give some preliminary results.Comment: 7 pages, 6 figures, presented at Lattice2006(High Temperature and Density), to appear in Proceedings of Scienc

    Influence of a temperature-dependent shear viscosity on the azimuthal asymmetries of transverse momentum spectra in ultrarelativistic heavy-ion collisions

    Full text link
    We study the influence of a temperature-dependent shear viscosity over entropy density ratio η/s\eta/s, different shear relaxation times τπ\tau_\pi, as well as different initial conditions on the transverse momentum spectra of charged hadrons and identified particles. We investigate the azimuthal flow asymmetries as a function of both collision energy and centrality. The elliptic flow coefficient turns out to be dominated by the hadronic viscosity at RHIC energies. Only at higher collision energies the impact of the viscosity in the QGP phase is visible in the flow asymmetries. Nevertheless, the shear viscosity near the QCD transition region has the largest impact on the collective flow of the system. We also find that the centrality dependence of the elliptic flow is sensitive to the temperature dependence of η/s\eta/s.Comment: 13 pages, 20 figure

    The equation of state with nonzero chemical potential for 2+1 flavors

    Get PDF
    We present results for the QCD equation of state with nonzero chemical potential using the Taylor expansion method with terms up to sixth order in the expansion. Our calculations are performed on asqtad 2+1 quark flavor lattices at Nt=4N_t=4.Comment: Talk given at the XXV International Symposium on Lattice Field Theory, July 30-4 August 2007, Regensburg, German
    • …
    corecore