475 research outputs found
Proof of principle of a high-spatial-resolution, resonant-response gamma-ray detector for Gamma Resonance Absorption in 14N
The development of a mm-spatial-resolution, resonant-response detector based
on a micrometric glass capillary array filled with liquid scintillator is
described. This detector was developed for Gamma Resonance Absorption (GRA) in
14N. GRA is an automatic-decision radiographic screening technique that
combines high radiation penetration (the probe is a 9.17 MeV gamma ray) with
very good sensitivity and specificity to nitrogenous explosives. Detailed
simulation of the detector response to electrons and protons generated by the
9.17 MeV gamma-rays was followed by a proof-of-principle experiment, using a
mixed gamma-ray and neutron source. Towards this, a prototype capillary
detector was assembled, including the associated filling and readout systems.
Simulations and experimental results indeed show that proton tracks are
distinguishable from electron tracks at relevant energies, on the basis of a
criterion that combines track length and light intensity per unit length.Comment: 18 pages, 16 figure
ArCLight - a Compact Dielectric Large-Area Photon Detector
ArCLight is a novel device for detecting scintillation light over large areas
with Photon Detection Efficiency (PDE) of the order of a few percent. Its
robust technological design allows for efficient use in large-volume particle
detectors, such as Liquid Argon Time Projection Chambers (LArTPCs) or liquid
scintillator detectors. Due to its dielectric structure it can be placed inside
volumes with high electric field. It could potentially replace vacuum
PhotoMultiplier Tubes (PMTs) in applications where high PDE is not required.
The photon detection efficiency for a 10x10cm2 detector prototype was measured
to be in the range of 0.8% to 2.2% across the active area
On the Electric Breakdown in Liquid Argon at Centimeter Scale
We present a study on the dependence of electric breakdown discharge
properties on electrode geometry and the breakdown field in liquid argon near
its boiling point. The measurements were performed with a spherical cathode and
a planar anode at distances ranging from 0.1 mm to 10.0 mm. A detailed study of
the time evolution of the breakdown volt-ampere characteristics was performed
for the first time. It revealed a slow streamer development phase in the
discharge. The results of a spectroscopic study of the visible light emission
of the breakdowns complement the measurements. The light emission from the
initial phase of the discharge is attributed to electro-luminescence of liquid
argon following a current of drifting electrons. These results contribute to
set benchmarks for breakdown-safe design of ionization detectors, such as
Liquid Argon Time Projection Chambers (LAr TPC).Comment: Minor revision according to editor report. 17 pages, 15 figures, 2
tables. Turboencabulato
A method to suppress dielectric breakdowns in liquid argon ionization detectors for cathode to ground distances of several millimeters
We present a method to reach electric field intensity as high as 400 kV/cm in
liquid argon for cathode-ground distances of several millimeters. This can be
achieved by suppressing field emission from the cathode, overcoming limitations
that we reported earlier
Measurement of the drift field in the ARGONTUBE LAr TPC with 266~nm pulsed laser beams
ARGONTUBE is a liquid argon time projection chamber (LAr TPC) with a drift
field generated in-situ by a Greinacher voltage multiplier circuit. We present
results on the measurement of the drift-field distribution inside ARGONTUBE
using straight ionization tracks generated by an intense UV laser beam. Our
analysis is based on a simplified model of the charging of a multi-stage
Greinacher circuit to describe the voltages on the field cage rings
First Demonstration of a Pixelated Charge Readout for Single-Phase Liquid Argon Time Projection Chambers
Liquid Argon Time Projection Chambers (LArTPCs) have been selected for the
future long-baseline Deep Underground Neutrino Experiment (DUNE). To allow
LArTPCs to operate in the high-multiplicity near detector environment of DUNE,
a new charge readout technology is required. Traditional charge readout
technologies introduce intrinsic ambiguities, combined with a slow detector
response, these ambiguities have limited the performance of LArTPCs, until now.
Here, we present a novel pixelated charge readout that enables the full 3D
tracking capabilities of LArTPCs. We characterise the signal to noise ratio of
charge readout chain, to be about 14, and demonstrate track reconstruction on
3D space points produced by the pixel readout. This pixelated charge readout
makes LArTPCs a viable option for the DUNE near detector complex.Comment: 13 pages, 9 figure
Measurement of the two-photon absorption cross-section of liquid argon with a time projection chamber
This paper reports on laser-induced multiphoton ionization at 266 nm of
liquid argon in a time projection chamber (LAr TPC) detector. The electron
signal produced by the laser beam is a formidable tool for the calibration and
monitoring of next-generation large-mass LAr TPCs. The detector that we
designed and tested allowed us to measure the two-photon absorption
cross-section of LAr with unprecedented accuracy and precision:
sigma_ex=(1.24\pm 0.10stat \pm 0.30syst) 10^{-56} cm^4s{-1}.Comment: 15 pages, 9 figure
Study of ionization signals in a TPC filled with a mixture of liquid Argon and Nitrogen
In this paper we report on the evidence for ionization track signals from
cosmic ray muons and Compton electrons in a Time Projection Chamber (TPC)
filled with liquid Argon and doped with different fractions of Nitrogen. This
study has been conducted in view of the possible use of liquid Argon/Nitrogen
TPCs for the detection of gamma rays in the resonant band of the Nitrogen
absorbtion spectrum, a promising technology for security and medical
applications.Comment: v2: minor content change and picture improvement
A prototype liquid Argon Time Projection Chamber for the study of UV laser multi-photonic ionization
This paper describes the design, realization and operation of a prototype
liquid Argon Time Projection Chamber (LAr TPC) detector dedicated to the
development of a novel online monitoring and calibration system exploiting UV
laser beams. In particular, the system is intended to measure the lifetime of
the primary ionization in LAr, in turn related to the LAr purity level. This
technique could be exploited by present and next generation large mass LAr TPCs
for which monitoring of the performance and calibration plays an important
role. Results from the first measurements are presented together with some
considerations and outlook.Comment: 26 pages, 27 figure
- âŠ