909 research outputs found
Near-TDC Flow-Field Analysis in a High-Tumble Production Spark-Ignition Engine Using Endoscopic High-Speed Particle Image Velocimetry
The latest-generation spark-ignition (SI) engines implement high-tumble flow design to achieve unprecedented high brake thermal efficiency of over 40%, which will continue to play an important role in both conventional and future electrified vehicles. To maximize the potential of high-tumble SI engines, there is a clear need for in-cylinder flow and flame analysis conducted timely in a realistic environment. For the first time, this study meets this need by performing innovative endoscopic imaging of flow fields and flame inside the cylinder of a selected production engine using a particle image velocimetry (PIV) laser and high-speed camera system operated at 35 kHz. Through this time-resolved, two-dimensional measurement of the realistic in-cylinder phenomenon, many new findings have been achieved. Regarding the tumble vortex, its center is seen more shifted to the exhaust valve side, which is related to an asymmetric "surging"flow structure formed during the upward motion of the piston in the compression stroke. When the piston approaches the top dead center (TDC), the tumble center is not clearly defined anymore, but a new lateral exhaust-to-intake flow forms as the surging flow bounces back off the exhaust valve side of the pent roof. This wall-guided "bounce-back"flow does not form when the intake valve closure (IVC) is retarded for the realization of the Atkinson Cycle, and thus the surging flow is reduced and peaks at a later timing. The new in-cylinder flow structures observed from the high-tumble engine directly impact the flame development. From the high-speed natural combustion luminosity imaging performed using the same camera endoscope, the flame centroid is found to shift toward the intake valve side, which is consistent with the bounce-back flow direction at the advanced IVC timing
Flame Image Velocimetry Analysis of Flame Front Turbulence and Growth Rate in an Optical Direct-Injection Spark-Ignition Engine
High-speed flame imaging has been widely used to investigate flame propagation in optically accessible direct-injection spark-ignition (DISI) engines. Previous studies utilized a high-speed movie to measure the overall growth rate of the flame and to analyze the flame shape and its correspondence with engine performance and efficiency. This study proposes the flame image velocimetry (FIV), a new diagnostic method enabling time-resolved, two-dimensional flame front vector extraction and turbulence intensity calculation. The high-speed camera is used to record the propagating petrol flame, and contrast variations are tracked to derive flow vectors. The PIVlab, a Matlab-based open-source code, is used for this flame front FIV analysis, and the systematic optimization of processing parameters is performed. The raw flame images are preprocessed using the contrast-limited adaptive histogram equalization (CLAHE) filter before a four-step fast Fourier transform (FFT) is applied. The interrogation window size for each step is optimized to achieve the highest flow vectors, which, for the studied cases, return 84-84-24-24 pixels with a half overlap. A total of 100 combustion cycles are FIV processed for each test condition to tackle the inherent cyclic variations. The Reynolds decomposition is applied to individual cycles to derive high-frequency component magnitude, which is interpreted as turbulence intensity. A spatial filtering method is used for the decomposition with optimized cut-off lengths for minimal cyclic variations of the measured turbulence intensity. The new FIV method is proven useful in a case study using two injectors with different nozzle structures. The results show that a smaller hole diameter and counterbore hole shape leads to a higher flame front vector magnitude, overall higher turbulence intensity, and more uniform distribution of turbulence than the injector with a larger hole diameter and cylindrical hole shape. This FIV result explains the higher engine power output and lower cyclic variations measured for the smaller hole injector
Tau Aggregation Inhibitor Therapy : An Exploratory Phase 2 Study in Mild or Moderate Alzheimer's Disease
ACKNOWLEDGMENTS We thank patients and their caregivers for their participation in the study and are indebted to all the investigators involved in the study, particularly Drs. Douglas Fowlie and Donald Mowat for their helpful contributions to the clinical execution of the study in Scotland. We thank Sharon Eastwood, Parexel, for assistance in preparing initial drafts of the manuscript. We acknowledge constructive comments provided by Professors G. Wilcock and S. Gauthier on drafts of the article. CMW, CRH, and JMDS are officers of, and hold beneficial interests in, TauRx Therapeutics. RTS, PB, KK, and DJW are paid consultants to TauRx Therapeutics. The study was financed entirely by TauRx TherapeuticsPeer reviewedPublisher PD
Flow directed spark stretch and flame propagation in a high-tumble production engine
This study performs endoscopic high-speed imaging to enhance the fundamental knowledge of in-cylinder flow structure and flame development process in a selected high-tumble production engine. The endoscopic high-speed particle image velocimetry (eHS-PIV) was performed for varied engine speeds and intake valve closing (IVC) timings to evaluate their impact on the in-cylinder flow structure in a motored engine condition. On another endoscope engine sharing the same hardware, high-speed flame imaging was conducted to visualise spark stretch and flame propagation. The flow and flame measurements were repeated for over 100 cycles and the ensemble-averaged results are compared. The eHS-PIV showed that a strong tumble vortex is generated during the piston compression with the flow directed towards the exhaust side. As the piston reaches top dead centre (TDC), however, a complex flow breakup involving multiple flow components occurs. This is followed by lateral flow vectors travelling back towards the intake side, which is termed as the bounce-back flow. For a tested engine speed range of 1700–2700 revolutions per minute (rpm), 2500 rpm shows the most significant bounce-back flow as a result of competition between the remaining exhaust-ward tumble flow strength and the newly formed bounce-back flow strength. At a retarded IVC timing, the flow loss leads to a weakened tumble flow and subsequently no bounce-back flow formation to maintain the exhaust-ward TDC flow direction. From the comparison between the flow results and spark/flame high-speed images, a strong positive correlation is found between the TDC flow direction and spark plasma stretch, and subsequently the flame propagation direction. The findings indicate that the TDC flow direction should be considered as a key parameter in the engine design and operating condition settings
Site-selective mapping of metastable states using electron-beam induced luminescence microscopy
Metastable states created by electron or hole capture in crystal defects are
widely used in dosimetry and photonic applications. Feldspar, the most abundant
mineral in the Earth crust (>50%), generates metastable states with lifetimes
of millions of years upon exposure to ionizing radiation. Although feldspar is
widely used in dosimetry and geochronometry, the creation of metastable states
and charge transfer across them is poorly understood. Understanding such
phenomena requires next-generation methods based on high-resolution,
site-selective probing of the metastable states. Recent studies using
site-selective techniques such as photoluminescence (PL), and radioluminescence
(RL) at 7 K have revealed that feldspar exhibits two near-infrared (NIR)
emission bands peaking at 880 nm and 955 nm, which are believed to arise from
the principal electron-trapping states.
Here, we map for the first time the electron-trapping states in
potassium-rich feldspar using spectrally-resolved cathodoluminescence
microscopy at a spatial resolution of around 6 to 22 micrometer. Each pixel
probed by a scanning electron microscope provides us a cathodoluminescence
spectrum (SEM-CL) in the range 600-1000 nm, and elemental data from
energy-dispersive x-ray (EDX) spectroscopy. We conclude that the two NIR
emissions are spatially variable and, therefore, originate from different
sites. This conclusion contradicts the existing model that the two emissions
arise from two different excited states of a principal trap. Moreover, we are
able to link the individual NIR emission peaks with the geochemical variations
(K, Na and Fe concentration), and propose a cluster model that explains the
quenching of the NIR emission by Fe4+
High resolution angle resolved photoemission studies on quasi-particle dynamics in graphite
We obtained the spectral function of the graphite H point using high
resolution angle resolved photoelectron spectroscopy (ARPES). The extracted
width of the spectral function (inverse of the photo-hole lifetime) near the H
point is approximately proportional to the energy as expected from the linearly
increasing density of states (DOS) near the Fermi energy. This is well
accounted by our electron-phonon coupling theory considering the peculiar
electronic DOS near the Fermi level. And we also investigated the temperature
dependence of the peak widths both experimentally and theoretically. The upper
bound for the electron-phonon coupling parameter is ~0.23, nearly the same
value as previously reported at the K point. Our analysis of temperature
dependent ARPES data at K shows that the energy of phonon mode of graphite has
much higher energy scale than 125K which is dominant in electron-phonon
coupling.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.
Comparisons of physique, body composition, and somatotype by weight division between male and female collegiate taekwondo athletes
The aim of the study was to compare the physique, body composition and somatotype between male and female collegiate taekwondo athletes and specially focus on differences by weight division. 60 collegiate taekwondo athletes (male: 29, female: 31) voluntarily participated in the study. They were divided into four Olympic weight divisions (male for -58 kg, -68 kg, -80 kg, +80 kg, female for -49 kg, -57 kg, -67 kg, +67 kg). Anthropometric measurements included body weight, height, sitting height, body circumferences (relaxed arm, flexed arm, chest, waist, hip, thigh, and calf), bone widths (humerus and femur), and skinfold thicknesses (triceps, subscapular, suprailiac, thigh, and calf) were measured. The three somatotype components were assessed by Heath-Carter anthropometric method (Carter & Heath, 1990). Independent t-test and one-way ANOVA were applied to analyze difference of dependent variables. Significant level was set at .05.
Male athletes were taller and heavier than female athletes. However, sum of skinfold thickness was significantly higher in female athletes than male athletes. The three somatotype components for male athletes were 3.4-3.5-3.1 and characterized with balanced mesomorphy. On the other hand, the somatotype of female athletes were 6.1-3.4-2.6 and characterized with mesomorphic endomorph. In male athletes -80 kg and +80 kg weight divisions were higher mesomorphy, but lower ectomorphy than -58 kg and -68 kg weight divisions. In female, -57 kg, -67 kg and +67 kg weight divisions were higher endomorphy and mesomorphy, but lower ectomorphy than -49 kg weight divisions.
In conclusion, male athletes had higher anthropometric characteristics than female athletes except for the skinfold thickness. Female athletes had higher endomorphy, whereas male athletes had higher ectomorphy. Physique and somatotype were different between weight divisions both male and female athletes. This study provides a reference data of morphological characteristics of collegiate elite taekwondo athletes
Recommended from our members
The purinergic P2Y14 receptor axis is a molecular determinant for organism survival under in utero radiation toxicity
In utero exposure of the embryo and fetus to radiation has been implicated in malformations or fetal death, and often produces lifelong health consequences such as cancers and mental retardation. Here we demonstrate that deletion of a G-protein-coupled purinergic receptor, P2Y14, confers potent resistance to in utero radiation. Intriguingly, a putative P2Y14 receptor ligand, UDP-glucose, phenocopies the effect of P2Y14 deficiency. These data indicate that P2Y14 is a receptor governing in utero tolerance to genotoxic stress that may be pharmacologically targeted to mitigate radiation toxicity in pregnancy
Latin American Trans-ancestry INitiative for OCD genomics (LATINO): Study protocol
Obsessive-compulsive disorder (OCD) is a debilitating psychiatric disorder. Worldwide, its prevalence is ~2% and its etiology is mostly unknown. Identifying biological factors contributing to OCD will elucidate underlying mechanisms and might contribute to improved treatment outcomes. Genomic studies of OCD are beginning to reveal long-sought risk loci, but \u3e95% of the cases currently in analysis are of homogenous European ancestry. If not addressed, this Eurocentric bias will result in OCD genomic findings being more accurate for individuals of European ancestry than other ancestries, thereby contributing to health disparities in potential future applications of genomics. In this study protocol paper, we describe the Latin American Trans-ancestry INitiative for OCD genomics (LATINO, https://www.latinostudy.org). LATINO is a new network of investigators from across Latin America, the United States, and Canada who have begun to collect DNA and clinical data from 5000 richly phenotyped OCD cases of Latin American ancestry in a culturally sensitive and ethical manner. In this project, we will utilize trans-ancestry genomic analyses to accelerate the identification of OCD risk loci, fine-map putative causal variants, and improve the performance of polygenic risk scores in diverse populations. We will also capitalize on rich clinical data to examine the genetics of treatment response, biologically plausible OCD subtypes, and symptom dimensions. Additionally, LATINO will help elucidate the diversity of the clinical presentations of OCD across cultures through various trainings developed and offered in collaboration with Latin American investigators. We believe this study will advance the important goal of global mental health discovery and equity
CANDELS Sheds Light on the Environmental Quenching of Low-mass Galaxies
We investigate the environmental quenching of galaxies, especially those with
stellar masses (M*), beyond the local universe. Essentially
all local low-mass quenched galaxies (QGs) are believed to live close to
massive central galaxies, which is a demonstration of environmental quenching.
We use CANDELS data to test {\it whether or not} such a dwarf QG--massive
central galaxy connection exists beyond the local universe. To this purpose, we
only need a statistically representative, rather than a complete, sample of
low-mass galaxies, which enables our study to . For each low-mass
galaxy, we measure the projected distance () to its nearest massive
neighbor (M*) within a redshift range. At a given redshift
and M*, the environmental quenching effect is considered to be observed if the
distribution of QGs () is significantly skewed toward
lower values than that of star-forming galaxies (). For galaxies
with , such a difference between
and is detected up to . Also, about 10\%
of the quenched galaxies in our sample are located between two and four virial
radii () of the massive halos. The median projected distance from
low-mass QGs to their massive neighbors, , decreases with
satellite M* at , but increases with satellite M*
at . This trend suggests a smooth, if any,
transition of the quenching timescale around at
.Comment: 8 pages, 5 figures. ApJL accepted. Typos correcte
- …