836 research outputs found

    Bases for qudits from a nonstandard approach to SU(2)

    Full text link
    Bases of finite-dimensional Hilbert spaces (in dimension d) of relevance for quantum information and quantum computation are constructed from angular momentum theory and su(2) Lie algebraic methods. We report on a formula for deriving in one step the (1+p)p qupits (i.e., qudits with d = p a prime integer) of a complete set of 1+p mutually unbiased bases in C^p. Repeated application of the formula can be used for generating mutually unbiased bases in C^d with d = p^e (e > or = 2) a power of a prime integer. A connection between mutually unbiased bases and the unitary group SU(d) is briefly discussed in the case d = p^e.Comment: From a talk presented at the 13th International Conference on Symmetry Methods in Physics (Dubna, Russia, 6-9 July 2009) organized in memory of Prof. Yurii Fedorovich Smirnov by the Bogoliubov Laboratory of Theoretical Physics of the JINR and the ICAS at Yerevan State University

    In memoriam two distinguished participants of the Bregenz Symmetries in Science Symposia: Marcos Moshinsky and Yurii Fedorovich Smirnov

    Full text link
    Some particular facets of the numerous works by Marcos Moshinsky and Yurii Fedorovich Smirnov are presented in these notes. The accent is put on some of the common interests of Yurii and Marcos in physics, theoretical chemistry, and mathematical physics. These notes also contain some more personal memories of Yurii Smirnov.Comment: Submitted for publication in Journal of Physics: Conference Serie

    On the use of the group SO(4,2) in atomic and molecular physics

    Full text link
    In this paper the dynamical noninvariance group SO(4,2) for a hydrogen-like atom is derived through two different approaches. The first one is by an established traditional ascent process starting from the symmetry group SO(3). This approach is presented in a mathematically oriented original way with a special emphasis on maximally superintegrable systems, N-dimensional extension and little groups. The second approach is by a new symmetry descent process starting from the noninvariance dynamical group Sp(8,R) for a four-dimensional harmonic oscillator. It is based on the little known concept of a Lie algebra under constraints and corresponds in some sense to a symmetry breaking mechanism. This paper ends with a brief discussion of the interest of SO(4,2) for a new group-theoretical approach to the periodic table of chemical elements. In this connection, a general ongoing programme based on the use of a complete set of commuting operators is briefly described. It is believed that the present paper could be useful not only to the atomic and molecular community but also to people working in theoretical and mathematical physics.Comment: 31 page

    Two-Photon Spectroscopy Between States of Opposite Parities

    Full text link
    Magnetic- and electric-dipole two-photon absorption (MED-TPA), recently introduced as a new spectroscopic technique for studying transitions between states of opposite parities, is investigated from a theoretical point of view. A new approximation, referred to as {\it weak quasi-closure approximation}, is used together with symmetry adaptation techniques to calculate the transition amplitude between states having well-defined symmetry properties. Selection rules for MED-TPA are derived and compared to selection rules for parity-forbidden electric-dipole two-photon absorption (ED-TPA).Comment: 7 pages, Revtex File, to be published in Physical Review

    Sum Rules for Multi-Photon Spectroscopy of Ions in Finite Symmetry

    Get PDF
    Models describing one- and two-photon transitions for ions in crystalline environments are unified and extended to the case of parity-allowed and parity- forbidden p-photon transitions. The number of independent parameters for characterizing the polarization dependence is shown to depend on an ensemble of properties and rules which combine symmetry considerations and physical models.Comment: 16 pages, Tex fil

    A q-deformed Aufbau Prinzip

    Full text link
    A building principle working for both atoms and monoatomic ions is proposed in this Letter. This principle relies on the q-deformed chain SO(4) > G where G = SO(3)_q

    4D singular oscillator and generalized MIC-Kepler system

    Full text link
    It is shown that the generalized MIC-Kepler system and four-dimensional singular oscillator are dual to each other and the duality transformation is the generalized version of the Kustaanheimo-Stiefel transformation.Comment: 6 page

    On the Use of Quantum Algebras in Rotation-Vibration Spectroscopy

    Full text link
    A two-parameter deformation of the Lie algebra u2_2 is used, in conjunction with the rotor system and the oscillator system, to generate a model for rotation-vibration spectroscopy of molecules and nuclei.Comment: 10 pages, Latex File, published in Modern Group Theoretical Methods in Physics, J. Bertrand et al. (eds.), Kluwer Academic Publishers (1995), 27-3

    Phase operators, temporally stable phase states, mutually unbiased bases and exactly solvable quantum systems

    Full text link
    We introduce a one-parameter generalized oscillator algebra A(k) (that covers the case of the harmonic oscillator algebra) and discuss its finite- and infinite-dimensional representations according to the sign of the parameter k. We define an (Hamiltonian) operator associated with A(k) and examine the degeneracies of its spectrum. For the finite (when k < 0) and the infinite (when k > 0 or = 0) representations of A(k), we construct the associated phase operators and build temporally stable phase states as eigenstates of the phase operators. To overcome the difficulties related to the phase operator in the infinite-dimensional case and to avoid the degeneracy problem for the finite-dimensional case, we introduce a truncation procedure which generalizes the one used by Pegg and Barnett for the harmonic oscillator. This yields a truncated generalized oscillator algebra A(k,s), where s denotes the truncation order. We construct two types of temporally stable states for A(k,s) (as eigenstates of a phase operator and as eigenstates of a polynomial in the generators of A(k,s)). Two applications are considered in this article. The first concerns physical realizations of A(k) and A(k,s) in the context of one-dimensional quantum systems with finite (Morse system) or infinite (Poeschl-Teller system) discrete spectra. The second deals with mutually unbiased bases used in quantum information.Comment: Accepted for publication in Journal of Physics A: Mathematical and Theoretical as a pape
    corecore