53 research outputs found
Magnetoresistance of disordered graphene: from low to high temperatures
We present the magnetoresistance (MR) of highly doped monolayer graphene
layers grown by chemical vapor deposition on 6H-SiC. The magnetotransport
studies are performed on a large temperature range, from = 1.7 K up to room
temperature. The MR exhibits a maximum in the temperature range K.
The maximum is observed at intermediate magnetic fields ( T), in between
the weak localization and the Shubnikov-de Haas regimes. It results from the
competition of two mechanisms. First, the low field magnetoresistance increases
continuously with and has a purely classical origin. This positive MR is
induced by thermal averaging and finds its physical origin in the energy
dependence of the mobility around the Fermi energy. Second, the high field
negative MR originates from the electron-electron interaction (EEI). The
transition from the diffusive to the ballistic regime is observed. The
amplitude of the EEI correction points towards the coexistence of both long and
short range disorder in these samples
Quantum Hall resistance standards from graphene grown by chemical vapor deposition on silicon carbide
Replacing GaAs by graphene to realize more practical quantum Hall resistance
standards (QHRS), accurate to within in relative value, but operating
at lower magnetic fields than 10 T, is an ongoing goal in metrology. To date,
the required accuracy has been reported, only few times, in graphene grown on
SiC by sublimation of Si, under higher magnetic fields. Here, we report on a
device made of graphene grown by chemical vapour deposition on SiC which
demonstrates such accuracies of the Hall resistance from 10 T up to 19 T at 1.4
K. This is explained by a quantum Hall effect with low dissipation, resulting
from strongly localized bulk states at the magnetic length scale, over a wide
magnetic field range. Our results show that graphene-based QHRS can replace
their GaAs counterparts by operating in as-convenient cryomagnetic conditions,
but over an extended magnetic field range. They rely on a promising hybrid and
scalable growth method and a fabrication process achieving low-electron density
devices.Comment: 12 pages, 8 figure
Sensing domain wall pinning in the longitudinal magnetoresistance of a two-dimensional electron gas
We investigate the sensing of domain wall pinning in thin Co wires positioned on top of a two-dimensional electron gas (2DEG) heterostructure by measuring the longitudinal resistance of the 2DEG as the magnetic field is swept, in an analogy to the Barkhausen effect. For comparison, we also measure the magnetoresistance of the ferromagnetic film in the same device in a subsequent sweep. Compared to the Hall measurements, the longitudinal measurement has the advantage of sensing magnetic activity over longer lengths, while compared to the measurement of the magnetoresistance in the ferromagnetic wire, it offers complementary information related to the pinning and unpinning of the domain wall, due to its sensitivity only to the out-of-plane magnetic field component.Fil: Kazazis, D.. No especifíca;Fil: Schüler, B.. Heinrich Heine University; AlemaniaFil: Granada, Mara. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Gennser, U.. No especifíca;Fil: Faini, G.. No especifíca;Fil: Cerchez, M.. Heinrich Heine University; AlemaniaFil: Heinzel, T.. Heinrich Heine University; Alemani
Nonmonotonic Classical Magnetoconductivity of a Two-Dimensional Electron Gas in a Disordered Array of Obstacles
Magnetotransport measurements in combination with molecular dynamics (MD)
simulations on two-dimensional disordered Lorentz gases in the classical regime
are reported. In quantitative agreement between experiment and simulation, the
magnetoconductivity displays a pronounced peak as a function of perpendicular
magnetic field which cannot be explained in the framework of existing
kinetic theories. We show that this peak is linked to the onset of a directed
motion of the electrons along the contour of the disordered obstacle matrix
when the cyclotron radius becomes smaller than the size of the obstacles. This
directed motion leads to transient superdiffusive motion and strong scaling
corrections in the vicinity of the insulator-to-conductor transitions of the
Lorentz gas.Comment: 5 pages, 4 figure
- …