600 research outputs found

    Null sets of harmonic measure on NTA domains: Lipschitz approximation revisited

    Full text link
    We show the David-Jerison construction of big pieces of Lipschitz graphs inside a corkscrew domain does not require its surface measure be upper Ahlfors regular. Thus we can study absolute continuity of harmonic measure and surface measure on NTA domains of locally finite perimeter using Lipschitz approximations. A partial analogue of the F. and M. Riesz Theorem for simply connected planar domains is obtained for NTA domains in space. As a consequence every Wolff snowflake has infinite surface measure.Comment: 22 pages, 6 figure

    Research on Artificial Intelligence Ethics Based on the Evolution of Population Knowledge Base

    Full text link
    The unclear development direction of human society is a deep reason for that it is difficult to form a uniform ethical standard for human society and artificial intelligence. Since the 21st century, the latest advances in the Internet, brain science and artificial intelligence have brought new inspiration to the research on the development direction of human society. Through the study of the Internet brain model, AI IQ evaluation, and the evolution of the brain, this paper proposes that the evolution of population knowledge base is the key for judging the development direction of human society, thereby discussing the standards and norms for the construction of artificial intelligence ethics.Comment: 12 pages, 6 figures,1 tabl

    Resolvent Estimates in L^p for the Stokes Operator in Lipschitz Domains

    Full text link
    We establish the LpL^p resolvent estimates for the Stokes operator in Lipschitz domains in RdR^d, d≥3d\ge 3 for ∣1p−1/2∣<12d+ϵ|\frac{1}{p}-1/2|< \frac{1}{2d} +\epsilon. The result, in particular, implies that the Stokes operator in a three-dimensional Lipschitz domain generates a bounded analytic semigroup in LpL^p for (3/2)-\varep < p< 3+\epsilon. This gives an affirmative answer to a conjecture of M. Taylor.Comment: 28 page. Minor revision was made regarding the definition of the Stokes operator in Lipschitz domain

    The Deformation of an Elastic Substrate by a Three-Phase Contact Line

    Full text link
    Young's classic analysis of the equilibrium of a three-phase contact line ignores the out-of-plane component of the liquid-vapor surface tension. While it has long been appreciated that this unresolved force must be balanced by elastic deformation of the solid substrate, a definitive analysis has remained elusive because conventional idealizations of the substrate imply a divergence of stress at the contact line. While a number of theories of have been presented to cut off the divergence, none of them have provided reasonable agreement with experimental data. We measure surface and bulk deformation of a thin elastic film near a three-phase contact line using fluorescence confocal microscopy. The out-of-plane deformation is well fit by a linear elastic theory incorporating an out-of-plane restoring force due to the surface tension of the gel. This theory predicts that the deformation profile near the contact line is scale-free and independent of the substrate elastic modulus.Comment: 4 pages, 3 figure

    A Probabilistic proof of the breakdown of Besov regularity in LL-shaped domains

    Full text link
    {We provide a probabilistic approach in order to investigate the smoothness of the solution to the Poisson and Dirichlet problems in LL-shaped domains. In particular, we obtain (probabilistic) integral representations for the solution. We also recover Grisvard's classic result on the angle-dependent breakdown of the regularity of the solution measured in a Besov scale

    Generalized Jacobi identities and ball-box theorem for horizontally regular vector fields

    Full text link
    We consider a family of vector fields and we assume a horizontal regularity on their derivatives. We discuss the notion of commutator showing that different definitions agree. We apply our results to the proof of a ball-box theorem and Poincar\'e inequality for nonsmooth H\"ormander vector fields.Comment: arXiv admin note: material from arXiv:1106.2410v1, now three separate articles arXiv:1106.2410v2, arXiv:1201.5228, arXiv:1201.520

    Finite Element Convergence for the Joule Heating Problem with Mixed Boundary Conditions

    Get PDF
    We prove strong convergence of conforming finite element approximations to the stationary Joule heating problem with mixed boundary conditions on Lipschitz domains in three spatial dimensions. We show optimal global regularity estimates on creased domains and prove a priori and a posteriori bounds for shape regular meshes.Comment: Keywords: Joule heating problem, thermistors, a posteriori error analysis, a priori error analysis, finite element metho

    The mixed problem in L^p for some two-dimensional Lipschitz domains

    Get PDF
    We consider the mixed problem for the Laplace operator in a class of Lipschitz graph domains in two dimensions with Lipschitz constant at most 1. The boundary of the domain is decomposed into two disjoint sets D and N. We suppose the Dirichlet data, f_D has one derivative in L^p(D) of the boundary and the Neumann data is in L^p(N). We find conditions on the domain and the sets D and N so that there is a p_0>1 so that for p in the interval (1,p_0), we may find a unique solution to the mixed problem and the gradient of the solution lies in L^p

    Convergence Rates in L^2 for Elliptic Homogenization Problems

    Full text link
    We study rates of convergence of solutions in L^2 and H^{1/2} for a family of elliptic systems {L_\epsilon} with rapidly oscillating oscillating coefficients in Lipschitz domains with Dirichlet or Neumann boundary conditions. As a consequence, we obtain convergence rates for Dirichlet, Neumann, and Steklov eigenvalues of {L_\epsilon}. Most of our results, which rely on the recently established uniform estimates for the L^2 Dirichlet and Neumann problems in \cite{12,13}, are new even for smooth domains.Comment: 25 page
    • …
    corecore