1,127 research outputs found

    On the controversy concerning the definition of quark and gluon angular momentum

    Full text link
    A major controversy has arisen in QCD as to how to split the total angular momentum into separate quark and gluon contributions, and as to whether the gluon angular momentum can itself be split, in a gauge invariant way, into a spin and orbital part. Several authors have proposed various answers to these questions and offered a variety of different expressions for the relevant operators. I argue that none of these is acceptable and suggest that the canonical expression for the momentum and angular momentum operators is the correct and physically meaningful one. It is then an inescapable fact that the gluon angular momentum operator cannot, in general, be split in a gauge invariant way into a spin and orbital part. However, the projection of the gluon spin onto its direction of motion i.e. its helicity is gauge invariant and is measured in deep inelastic scattering on nucleons. The Ji sum rule, relating the quark angular momentum to generalized parton distributions, though not based on the canonical operators, is shown to be correct, if interpreted with due care. I also draw attention to several interesting aspects of QED and QCD, which, to the best of my knowledge, are not commented upon in the standard textbooks on Field Theory.Comment: 41 pages; Some incorrect statements have been rectified and a detailed discussion has been added concerning the momentum carried by quarks and the Ji sum rule for the angular momentu

    Molecular and classical cytogenetic analyses demonstrate an apomorphic reciprocal chromosomal translocation in Gorilla gorilla

    Get PDF
    The existence of an apomorphic reciprocal chromosomal translocation in the gorilla lineage has been asserted or denied by various cytogeneticists. We employed a new molecular cytogenetic strategy (chromosomal in situ suppression hybridization) combined with high-resolution banding, replication sequence analysis, and fluorochrome staining to demonstrate that a reciprocal translocation between ancestral chromosomes homologous to human chromosome 5 and 17 has indeed occurred

    Orbital and Spin Excitations in Cobalt Oxide

    Full text link
    By means of neutron scattering we have determined new branches of magnetic excitations in orbitally active CoO (TN=290 K) up to 15 THz and for temperatures from 6 K to 450 K. Data were taken in the (111) direction in six single-crystal zones. From the dependence on temperature and Q we have identified several branches of magnetic excitation. We describe a model for the coupled orbital and spin states of Co2+ subject to a crystal field and tetragonal distortion.Comment: To be published in Physica B (Proceedings of SCES07 conference in Houston

    Triple Compton effect: A photon splitting into three upon collision with a free electron

    Get PDF
    The process in which a photon splits into three after the collision with a free electron (triple Compton effect) is the most basic process for the generation of a high-energy multi-particle entangled state composed out of elementary quanta. The cross section of the process is evaluated in two experimentally realizable situations, one employing gamma photons and stationary electrons, and the other using keV photons and GeV electrons of an x-ray free electron laser. For the first case, our calculation is in agreement with the only available measurement of the differential cross section for the process under study. Our estimates indicate that the process should be readily measurable also in the second case. We quantify the polarization entanglement in the final state by a recently proposed multi-particle entanglement measure.Comment: 5 pages; RevTeX; to be published in Phys.Rev.Let

    Radiative processes in external gravitational fields

    Full text link
    Kinematically forbidden processes may be allowed in the presence of external gravitational fields. These ca be taken into account by introducing generalized particle momenta. The corresponding transition probabilities can then be calculated to all orders in the metric deviation from the field-free expressions by simply replacing the particle momenta with their generalized counterparts. The procedure applies to particles of any spin and to any gravitational fields. transition probabilities, emission power, and spectra are, to leading order, linear in the metric deviation. It is also shown how a small dissipation term in the particle wave equations can trigger a strong backreaction that introduces resonances in the radiative process and deeply affects the resulting gravitational background.Comment: 5 pages, 1 figur

    Von Neumann's 'No Hidden Variables' Proof: A Re-Appraisal

    Full text link
    Since the analysis by John Bell in 1965, the consensus in the literature is that von Neumann's 'no hidden variables' proof fails to exclude any significant class of hidden variables. Bell raised the question whether it could be shown that any hidden variable theory would have to be nonlocal, and in this sense 'like Bohm's theory.' His seminal result provides a positive answer to the question. I argue that Bell's analysis misconstrues von Neumann's argument. What von Neumann proved was the impossibility of recovering the quantum probabilities from a hidden variable theory of dispersion free (deterministic) states in which the quantum observables are represented as the 'beables' of the theory, to use Bell's term. That is, the quantum probabilities could not reflect the distribution of pre-measurement values of beables, but would have to be derived in some other way, e.g., as in Bohm's theory, where the probabilities are an artefact of a dynamical process that is not in fact a measurement of any beable of the system.Comment: 8 pages, no figures; for Peter Mittelstaedt Festschrift issue of Foundations of Physic

    Radiative corrections to the Dalitz plot of K_{l3}^\pm decays

    Full text link
    We calculate the model-independent radiative corrections to the Dalitz plot of K_{l3}^\pm decays to order (\alpha/\pi)(q/M_1), where q is the momentum transfer and M_1 is the mass of the kaon. The final results are presented, first, with the triple integration over the variables of the bremsstrahlung photon ready to be performed numerically and, second, in an analytical form. These two forms are useful to crosscheck on one another and with other calculations. This paper is organized to make it accessible and reliable in the analysis of the Dalitz plot of precision experiments and is not compromised to fixing the form factors at predetermined values. It is assumed that the real photons are kinematically discriminated. Otherwise, our results have a general model-independent applicability.Comment: RevTex4, 38 pages, 5 figures, 5 tables; some typos corrected; discussion extended to compare with other result
    corecore