3,903 research outputs found

    Disc formation in turbulent cloud cores: Circumventing the magnetic braking catastrophe

    Full text link
    We present collapse simulations of strongly magnetised, 100 M_sun, turbulent cloud cores. Around the protostars formed during the collapse Keplerian discs with typical sizes of up to 100 AU build up in contrast to previous simulations neglecting turbulence. Analysing the condensations in which the discs form, we show that the magnetic flux loss is not sufficient to explain the build-up of Keplerian discs. The average magnetic field is strongly inclined to the disc which might reduce the magnetic braking efficiency. However, the main reason for the reduced magnetic braking efficiency is the highly disordered magnetic field in the surroundings of the discs. Furthermore, due to the lack of a coherently rotating structure in the turbulent environment of the disc no toroidal magnetic field necessary for angular momentum extraction can build up. Simultaneously the angular momentum inflow remains high due to local shear flows created by the turbulent motions. We suggest that the "magnetic braking catastrophe" is an artefact of the idealised non-turbulent initial conditions and that turbulence provides a natural mechanism to circumvent this problem.Comment: 4 pages, 2 figures. To appear in the proceedings of 'The Labyrinth of Star Formation' (18-22 June 2012, Chania, Greece), published by Springe

    Decoherence and entropy of primordial fluctuations. I: Formalism and interpretation

    Full text link
    We propose an operational definition of the entropy of cosmological perturbations based on a truncation of the hierarchy of Green functions. The value of the entropy is unambiguous despite gauge invariance and the renormalization procedure. At the first level of truncation, the reduced density matrices are Gaussian and the entropy is the only intrinsic quantity. In this case, the quantum-to-classical transition concerns the entanglement of modes of opposite wave-vectors, and the threshold of classicality is that of separability. The relations to other criteria of classicality are established. We explain why, during inflation, most of these criteria are not intrinsic. We complete our analysis by showing that all reduced density matrices can be written as statistical mixtures of minimal states, the squeezed properties of which are less constrained as the entropy increases. Pointer states therefore appear not to be relevant to the discussion. The entropy is calculated for various models in paper II.Comment: 23 page

    Decoherence and entropy of primordial fluctuations II. The entropy budget

    Full text link
    We calculate the entropy of adiabatic perturbations associated with a truncation of the hierarchy of Green functions at the first non trivial level, i.e. in a self-consistent Gaussian approximation. We give the equation governing the entropy growth and discuss its phenomenology. It is parameterized by two model-dependent kernels. We then examine two particular inflationary models, one with isocurvature perturbations, the other with corrections due to loops of matter fields. In the first model the entropy grows rapidely, while in the second the state remains pure (at one loop).Comment: 28 page

    A large-scale evaluation framework for EEG deep learning architectures

    Full text link
    EEG is the most common signal source for noninvasive BCI applications. For such applications, the EEG signal needs to be decoded and translated into appropriate actions. A recently emerging EEG decoding approach is deep learning with Convolutional or Recurrent Neural Networks (CNNs, RNNs) with many different architectures already published. Here we present a novel framework for the large-scale evaluation of different deep-learning architectures on different EEG datasets. This framework comprises (i) a collection of EEG datasets currently including 100 examples (recording sessions) from six different classification problems, (ii) a collection of different EEG decoding algorithms, and (iii) a wrapper linking the decoders to the data as well as handling structured documentation of all settings and (hyper-) parameters and statistics, designed to ensure transparency and reproducibility. As an applications example we used our framework by comparing three publicly available CNN architectures: the Braindecode Deep4 ConvNet, Braindecode Shallow ConvNet, and two versions of EEGNet. We also show how our framework can be used to study similarities and differences in the performance of different decoding methods across tasks. We argue that the deep learning EEG framework as described here could help to tap the full potential of deep learning for BCI applications.Comment: 7 pages, 3 figures, final version accepted for presentation at IEEE SMC 2018 conferenc

    Comment on the equivalence of Bakamjian-Thomas mass operators in different forms of dynamics

    Full text link
    We discuss the scattering equivalence of the generalized Bakamjian-Thomas construction of dynamical representations of the Poincar\'e group in all of Dirac's forms of dynamics. The equivalence was established by Sokolov in the context of proving that the equivalence holds for models that satisfy cluster separability. The generalized Bakamjian Thomas construction is used in most applications, even though it only satisfies cluster properties for systems of less than four particles. Different forms of dynamics are related by unitary transformations that remove interactions from some infinitesimal generators and introduce them to other generators. These unitary transformation must be interaction dependent, because they can be applied to a non-interacting generator and produce an interacting generator. This suggests that these transformations can generate complex many-body forces when used in many-body problems. It turns out that this is not the case. In all cases of interest the result of applying the unitary scattering equivalence results in representations that have simple relations, even though the unitary transformations are dynamical. This applies to many-body models as well as models with particle production. In all cases no new many-body operators are generated by the unitary scattering equivalences relating the different forms of dynamics. This makes it clear that the various calculations used in applications that emphasize one form of the dynamics over another are equivalent. Furthermore, explicit representations of the equivalent dynamical models in any form of dynamics are easily constructed. Where differences do appear is when electromagnetic probes are treated in the one-photon exchange approximation. This approximation is different in each of Dirac's forms of dynamics.Comment: 6 pages, no figure

    Thermal limitation of far-field matter-wave interference

    Full text link
    We assess the effect of the heat radiation emitted by mesoscopic particles on their ability to show interference in a double slit arrangement. The analysis is based on a stationary, phase-space based description of matter wave interference in the presence of momentum-exchange mediated decoherence.Comment: 8 pages, 2 figures; published versio

    Change of decoherence scenario and appearance of localization due to reservoir anharmonicity

    Full text link
    Although coupling to a super-Ohmic bosonic reservoir leads only to partial dephasing on short time scales, exponential decay of coherence appears in the Markovian limit (for long times) if anharmonicity of the reservoir is taken into account. This effect not only qualitatively changes the decoherence scenario but also leads to localization processes in which superpositions of spatially separated states dephase with a rate that depends on the distance between the localized states. As an example of the latter process, we study the decay of coherence of an electron state delocalized over two semiconductor quantum dots due to anharmonicity of phonon modes.Comment: 4 pages, 1 figure; moderate changes; auxiliary material added; to appear in Phys. Rev. Let

    Quantitative Relativistic Effects in the Three-Nucleon Problem

    Full text link
    The quantitative impact of the requirement of relativistic invariance in the three-nucleon problem is examined within the framework of Poincar\'e invariant quantum mechanics. In the case of the bound state, and for a wide variety of model implementations and reasonable interactions, most of the quantitative effects come from kinematic factors that can easily be incorporated within a non-relativistic momentum-space three-body code.Comment: 15 pages, 15 figure

    General equation for Zeno-like effects in spontaneous exponential decay

    Get PDF
    It was shown that different mechanisms of perturbation of spontaneous decay constant: inelastic interaction of emitted particles with particle detector, decay onto an unstable level, Rabi transition from the final state of decay (electromagnetic field domination) and some others are really the special kinds of one general effect - perturbation of decay constant by dissipation of the final state of decay. Such phenomena are considered to be Zeno-like effects and general formula for perturbed decay constant is deduced.Comment: LaTeX 2.09 file, 11 pages, no figures. Accepted in Physics Letters
    corecore