56,136 research outputs found

    Complete gradient-LC-ESI system on a chip for protein analysis

    Get PDF
    This paper presents the first fully integrated gradient-elution liquid chromatography-electrospray ionization (LC-ESI) system on a chip. This chip integrates a pair of high-pressure gradient pumps, a sample injection pump, a passive mixer, a packed separation column, and an ESI nozzle. We also present the successful on-chip separation of protein digests by reverse phase (RP)-LC coupled with on-line mass spectrometer (MS) analysis

    Potential ring of Dirac nodes in a new polymorph of Ca3_3P2_2

    Full text link
    We report the crystal structure of a new polymorph of Ca3_3P2_2, and an analysis of its electronic structure. The crystal structure was determined through Rietveld refinements of powder synchrotron x-ray diffraction data. Ca3_3P2_2 is found to be a variant of the Mn5_5Si3_3 structure type, with a Ca ion deficiency compared to the ideal 5:3 stoichiometry to yield a charge-balanced compound. We also report the observation of a secondary phase, Ca5_5P3_3H, in which the Ca and P sites are fully occupied and the presence of interstitial hydride ions creates a closed-shell electron-precise compound. We show via electronic structure calculations of Ca3_3P2_2 that the compound is stabilized by a gap in the density of states compared to the hypothetical compound Ca5_5P3_3. Moreover, the calculated band structure of Ca3_3P2_2 indicates that it should be a three-dimensional Dirac semimetal with a highly unusual ring of Dirac nodes at the Fermi level. The Dirac states are protected against gap opening by a mirror plane in a manner analogous to graphene. The results suggest that further study of the electronic properties of Ca3_3P2_2 will be of interest

    Recent Trends in Hospitalization for Acute Myocardial Infarction in Beijing: Increasing Overall Burden and a Transition From ST-Segment Elevation to Non-ST-Segment Elevation Myocardial Infarction in a Population-Based Study

    Get PDF
    Comparable data on trends of hospitalization rates for ST-segment elevation myocardial infarction (STEMI) and non-STEMI (NSTEMI) remain unavailable in representative Asian populations.To examine the temporal trends of hospitalization for acute myocardial infarction (AMI) and its subtypes in Beijing.Patients hospitalized for AMI in Beijing from January 1, 2007 to December 31, 2012 were identified from the validated Hospital Discharge Information System. Trends in hospitalization rates, in-hospital mortality, length of stay (LOS), and hospitalization costs were analyzed by regression models for total AMI and for STEMI and NSTEMI separately. In total, 77,943 patients were admitted for AMI in Beijing during the 6 years, among whom 67.5% were males and 62.4% had STEMI. During the period, the rate of AMI hospitalization per 100,000 population increased by 31.2% (from 55.8 to 73.3 per 100,000 population) after age standardization, with a slight decrease in STEMI but a 3-fold increase in NSTEMI. The ratio of STEMI to NSTEMI decreased dramatically from 6.5:1.0 to 1.3:1.0. The age-standardized in-hospital mortality decreased from 11.2% to 8.6%, with a significant decreasing trend evident for STEMI in males and females (P < 0.001) and for NSTEMI in males (P = 0.02). The rate of percutaneous coronary intervention increased from 28.7% to 55.6% among STEMI patients. The total cost for AMI hospitalization increased by 56.8% after adjusting for inflation, although the LOS decreased by 1 day.The hospitalization burden for AMI has been increasing in Beijing with a transition from STEMI to NSTEMI. Diverse temporal trends in AMI subtypes from the unselected "real-world" data in Beijing may help to guide the management of AMI in China and other developing countries

    A Simple Three-Parameter Model Potential For Diatomic Systems: From Weakly and Strongly Bound Molecules to Metastable Molecular Ions

    Full text link
    Based on a simplest molecular orbital theory of H2+_{2}^{+}, a three-parameter model potential function is proposed to describe ground-state diatomic systems with closed-shell and/or S-type valence-shell constituents over a significantly wide range of internuclear distances. More than 200 weakly and strongly bound diatomics have been studied, including neutral and singly-charged diatomics (e.g., H2_{2}, Li2_{2}, LiH, Cd2_{2}, Na2+_{2}^{+}, and RbH−^{-}), long-range bound diatomics (e.g., NaAr, CdNe, He2_{2}, CaHe, SrHe, and BaHe), metastable molecular dications (e.g., BeH++^{++}, AlH++^{++}, Mg2++_{2}^{++}, and LiBa++^{++}), and molecular trications (e.g., YHe+++^{+++} and ScHe+++^{+++}).Comment: 5 pages, 4 figures, accepted by Physical Review Letter

    Lagrangian Data-Driven Reduced Order Modeling of Finite Time Lyapunov Exponents

    Full text link
    There are two main strategies for improving the projection-based reduced order model (ROM) accuracy: (i) improving the ROM, i.e., adding new terms to the standard ROM; and (ii) improving the ROM basis, i.e., constructing ROM bases that yield more accurate ROMs. In this paper, we use the latter. We propose new Lagrangian inner products that we use together with Eulerian and Lagrangian data to construct new Lagrangian ROMs. We show that the new Lagrangian ROMs are orders of magnitude more accurate than the standard Eulerian ROMs, i.e., ROMs that use standard Eulerian inner product and data to construct the ROM basis. Specifically, for the quasi-geostrophic equations, we show that the new Lagrangian ROMs are more accurate than the standard Eulerian ROMs in approximating not only Lagrangian fields (e.g., the finite time Lyapunov exponent (FTLE)), but also Eulerian fields (e.g., the streamfunction). We emphasize that the new Lagrangian ROMs do not employ any closure modeling to model the effect of discarded modes (which is standard procedure for low-dimensional ROMs of complex nonlinear systems). Thus, the dramatic increase in the new Lagrangian ROMs' accuracy is entirely due to the novel Lagrangian inner products used to build the Lagrangian ROM basis
    • …
    corecore