356 research outputs found

    Encoding difficulty promotes postlearning changes in sleep spindle activity during napping

    Full text link
    Learning-dependent increases in sleep spindle density have been reported during nocturnal sleep immediately after the learning session. Here, we investigated experience-dependent changes in daytime sleep EEG activity after declarative learning of unrelated word pairs. At weekly intervals, 13 young male volunteers spent three 24 h sessions in the laboratory under carefully controlled homeostatic and circadian conditions. At approximately midday, subjects performed either one of two word-pair learning tasks or a matched nonlearning control task, in a counterbalanced order. The two learning lists differed in the level of concreteness of the words used, resulting in an easier and a more difficult associative encoding condition, as confirmed by performance at immediate cued recall. Subjects were then allowed to sleep for 4 h; afterward, delayed cued recall was tested. Compared with the control condition, sleep EEG spectral activity in the low spindle frequency range and the density of low-frequency sleep spindles (11.25-13.75 Hz) were both significantly increased in the left frontal cortex after the difficult but not after the easy encoding condition. Furthermore, we found positive correlations between these EEG changes during sleep and changes in memory performance between pre-nap and post-nap recall sessions. These results indicate that, like during nocturnal sleep, daytime sleep EEG oscillations including spindle activity are modified after declarative learning of word pairs. Furthermore, we demonstrate here that the nature of the learning material is a determinant factor for sleep-related alterations after declarative learning

    Stress resilience during the coronavirus pandemic

    Get PDF
    The epidemic of the 2019 novel coronavirus SARS-CoV-2, causing the coronavirus disease 2019 (COVID-19) is a global public health emergency with multifaceted severe consequences for people's lives and their mental health. In this article, as members of the European College of Neuropsychopharmacology (ECNP) Resilience, we will discuss the urgent need for a focus on resilience during the current coronavirus pandemic. Resilience is pivotal to cope with stress and vital to stay in balance. We will discuss the importance of resilience at the individual and societal level, but also the implication for patients with a psychiatric condition and health care workers. We not only advocate for an increased focus on mental health during the coronavirus pandemic but also highlight the urgent need of augmenting our focus on resilience and on strategies to enhance it. The epidemic of the 2019 novel coronavirus SARS-CoV-2, causing the coronavirus disease 2019 (COVID-19), first expanded within the Wuhan region in China and quickly spread to Europe and to the rest of the world (Zhou et al., 2020). The outbreak of COVID-19 is a global public health emergency with multifaceted severe consequences for people's lives and their mental health. In this article, as members of the European College of Neuropsychopharmacology (ECNP) Resilience, we will discuss the urgent need for a focus on resilience during the current coronavirus pandemic. Resilience is pivotal to cope with stress and vital to stay in balance. We will discuss the importance of resilience at the individual and societal level, but also the implication for patients with a psychiatric condition and health care workers

    A Conserved Function of C. elegans CASY-1 Calsyntenin in Associative Learning

    Get PDF
    BACKGROUND: Whole-genome association studies in humans have enabled the unbiased discovery of new genes associated with human memory performance. However, such studies do not allow for a functional or causal testing of newly identified candidate genes. Since polymorphisms in Calsyntenin 2 (CLSTN2) showed a significant association with episodic memory performance in humans, we tested the C. elegans CLSTN2 ortholog CASY-1 for possible functions in the associative behavior of C. elegans. METHODOLOGY/PRINCIPAL FINDINGS: Using three different associative learning paradigms and functional rescue experiments, we show that CASY-1 plays an important role during associative learning in C. elegans. Furthermore, neuronal expression of human CLSTN2 in C. elegans rescues the learning defects of casy-1 mutants. Finally, genetic interaction studies and neuron-specific expression experiments suggest that CASY-1 may regulate AMPA-like GLR-1 glutamate receptor signaling. CONCLUSION/SIGNIFICANCE: Our experiments demonstrate a remarkable conservation of the molecular function of Calsyntenins between nematodes and humans and point at a role of C. elegans casy-1 in regulating a glutamate receptor signaling pathway

    Blocking Mineralocorticoid Receptors prior to Retrieval Reduces Contextual Fear Memory in Mice

    Get PDF
    BACKGROUND: Corticosteroid hormones regulate appraisal and consolidation of information via mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respectively. How activation of these receptors modulates retrieval of fearful information and the subsequent expression of fear is largely unknown. We tested here whether blockade of MRs or GRs during retrieval also affects subsequent expression of fear memory. METHODOLOGY/PRINCIPAL FINDINGS: Mice were trained in contextual or tone cue fear conditioning paradigms, by pairing mild foot shocks with a particular context or tone respectively. Twenty-four hours after training, context-conditioned animals were re-exposed to the context for 3 or 30 minutes (day 2); tone-conditioned animals were placed in a different context and re-exposed to one or six tones. Twenty-four hours (day 3) and one month later, freezing behavior to the aversive context/tone was scored again. MR or GR blockade was achieved by giving spironolactone or RU486 subcutaneously one hour before retrieval on day 2. Spironolactone administered prior to brief context re-exposure reduced freezing behavior during retrieval and 24 hours later, but not one month later. Administration of spironolactone without retrieval of the context or immediately after retrieval on day 2 did not reduce freezing on day 3. Re-exposure to the context for 30 minutes on day 2 significantly reduced freezing on day 3 and one month later, but freezing was not further reduced by spironolactone. Administration of spironolactone prior to tone-cue re-exposure on day 2 did not affect freezing behavior. Treatment with RU486 prior to re-exposure did not affect context or tone-cue fear memories at any time point. CONCLUSIONS/SIGNIFICANCE: We conclude that MR blockade prior to retrieval strongly reduces the expression of contextual fear, implying that MRs, rather than GRs, play an important role in retrieval of emotional information and subsequent fear expression

    A genome-wide survey of human short-term memory

    Get PDF
    Recent advances in the development of high-throughput genotyping platforms allow for the unbiased identification of genes and genomic sequences related to heritable traits. In this study, we analyzed human short-term memory, which refers to the ability to remember information over a brief period of time and which has been found disturbed in many neuropsychiatric conditions, including schizophrenia and depression. We performed a genome-wide survey at 909 622 polymorphic loci and report six genetic variations significantly associated with human short-term memory performance after genome-wide correction for multiple comparisons. A polymorphism within SCN1A (encoding the α subunit of the type I voltage-gated sodium channel) was replicated in three independent populations of 1699 individuals. Functional magnetic resonance imaging during an n-back working memory task detected SCN1A allele-dependent activation differences in brain regions typically involved in working memory processes. These results suggest an important role for SCN1A in human short-term memory

    Limbic Justice—Amygdala Involvement in Immediate Rejection in the Ultimatum Game

    Get PDF
    Imaging studies have revealed a putative neural account of emotional bias in decision making. However, it has been difficult in previous studies to identify the causal role of the different sub-regions involved in decision making. The Ultimatum Game (UG) is a game to study the punishment of norm-violating behavior. In a previous influential paper on UG it was suggested that frontal insular cortex has a pivotal role in the rejection response. This view has not been reconciled with a vast literature that attributes a crucial role in emotional decision making to a subcortical structure (i.e., amygdala). In this study we propose an anatomy-informed model that may join these views. We also present a design that detects the functional anatomical response to unfair proposals in a subcortical network that mediates rapid reactive responses. We used a functional MRI paradigm to study the early components of decision making and challenged our paradigm with the introduction of a pharmacological intervention to perturb the elicited behavioral and neural response. Benzodiazepine treatment decreased the rejection rate (from 37.6% to 19.0%) concomitantly with a diminished amygdala response to unfair proposals, and this in spite of an unchanged feeling of unfairness and unchanged insular response. In the control group, rejection was directly linked to an increase in amygdala activity. These results allow a functional anatomical detection of the early neural components of rejection associated with the initial reactive emotional response. Thus, the act of immediate rejection seems to be mediated by the limbic system and is not solely driven by cortical processes, as previously suggested. Our results also prompt an ethical discussion as we demonstrated that a commonly used drug influences core functions in the human brain that underlie individual autonomy and economic decision making

    Glucocorticoids Decrease Hippocampal and Prefrontal Activation during Declarative Memory Retrieval in Young Men

    Get PDF
    Glucocorticoids (GCs, cortisol in human) are associated with impairments in declarative memory retrieval. Brain regions hypothesized to mediate these effects are the hippocampus and prefrontal cortex (PFC). Our aim was to use fMRI in localizing the effects of GCs during declarative memory retrieval. Therefore, we tested memory retrieval in 21 young healthy males in a randomized placebo-controlled crossover design. Participants encoded word lists containing neutral and emotional words 1 h prior to ingestion of 20 mg hydrocortisone. Memory retrieval was tested using an old/new recognition paradigm in a rapid event-related design. It was found that hydrocortisone decreased brain activity in both the hippocampus and PFC during successful retrieval of neutral words. These observations are consistent with previous animal and human studies suggesting that glucocorticoids modulate both hippocampal and prefrontal brain regions that are crucially involved in memory processing

    Neuroanatomical Variability of Religiosity

    Get PDF
    We hypothesized that religiosity, a set of traits variably expressed in the population, is modulated by neuroanatomical variability. We tested this idea by determining whether aspects of religiosity were predicted by variability in regional cortical volume. We performed structural magnetic resonance imaging of the brain in 40 healthy adult participants who reported different degrees and patterns of religiosity on a survey. We identified four Principal Components of religiosity by Factor Analysis of the survey items and associated them with regional cortical volumes measured by voxel-based morphometry. Experiencing an intimate relationship with God and engaging in religious behavior was associated with increased volume of R middle temporal cortex, BA 21. Experiencing fear of God was associated with decreased volume of L precuneus and L orbitofrontal cortex BA 11. A cluster of traits related with pragmatism and doubting God's existence was associated with increased volume of the R precuneus. Variability in religiosity of upbringing was not associated with variability in cortical volume of any region. Therefore, key aspects of religiosity are associated with cortical volume differences. This conclusion complements our prior functional neuroimaging findings in elucidating the proximate causes of religion in the brain

    Choosy Moral Punishers

    Get PDF
    The punishment of social misconduct is a powerful mechanism for stabilizing high levels of cooperation among unrelated individuals. It is regularly assumed that humans have a universal disposition to punish social norm violators, which is sometimes labelled “universal structure of human morality” or “pure aversion to social betrayal”. Here we present evidence that, contrary to this hypothesis, the propensity to punish a moral norm violator varies among participants with different career trajectories. In anonymous real-life conditions, future teachers punished a talented but immoral young violinist: they voted against her in an important music competition when they had been informed of her previous blatant misconduct toward fellow violin students. In contrast, future police officers and high school students did not punish. This variation among socio-professional categories indicates that the punishment of norm violators is not entirely explained by an aversion to social betrayal. We suggest that context specificity plays an important role in normative behaviour; people seem inclined to enforce social norms only in situations that are familiar, relevant for their social category, and possibly strategically advantageous

    Enhanced Fear Expression in a Psychopathological Mouse Model of Trait Anxiety: Pharmacological Interventions

    Get PDF
    The propensity to develop an anxiety disorder is thought to be determined by genetic and environmental factors. Here we investigated the relationship between a genetic predisposition to trait anxiety and experience-based learned fear in a psychopathological mouse model. Male CD-1 mice selectively bred for either high (HAB), or normal (NAB) anxiety-related behaviour on the elevated plus maze were subjected to classical fear conditioning. During conditioning both mouse lines showed increased fear responses as assessed by freezing behaviour. However, 24 h later, HAB mice displayed more pronounced conditioned responses to both a contextual or cued stimulus when compared with NAB mice. Interestingly, 6 h and already 1 h after fear conditioning, freezing levels were high in HAB mice but not in NAB mice. These results suggest that trait anxiety determines stronger fear memory and/or a weaker ability to inhibit fear responses in the HAB line. The enhanced fear response of HAB mice was attenuated by treatment with either the α2,3,5-subunit selective benzodiazepine partial agonist L-838,417, corticosterone or the selective neurokinin-1 receptor antagonist L-822,429. Overall, the HAB mouse line may represent an interesting model (i) for identifying biological factors underlying misguided conditioned fear responses and (ii) for studying novel anxiolytic pharmacotherapies for patients with fear-associated disorders, including post-traumatic stress disorder and phobias
    corecore