33,294 research outputs found
Surface tension in a compressible liquid-drop model: Effects on nuclear density and neutron skin thickness
We examine whether or not the surface tension acts to increase the nucleon
density in the nuclear interior within a compressible liquid-drop model. We
find that it depends on the density dependence of the surface tension, which
may in turn be deduced from the neutron skin thickness of stable nuclei.Comment: 4 pages, 1 figure, to be published in Physical Review
Triaxial nuclear models and the outer crust of nonaccreting cold neutron stars
The properties and composition of the outer crust of nonaccreting cold
neutron stars are studied by applying the model of Baym, Pethick, and
Sutherland (BPS) and taking into account for the first time triaxial
deformations of nuclei. Two theoretical nuclear models, Hartree-Fock plus
pairing in the BCS approximation (HF-BCS) with Skyrme SLy6 parametrization and
Hartree-Fock-Bogolyubov (HFB) with Gogny D1S force, are used to calculate the
nuclear masses. The two theoretical calculations are compared concerning their
neutron drip line, binding energies, magic neutron numbers, and the sequence of
nuclei in the outer crust of nonaccreting cold neutron stars, with special
emphasis on the effect of triaxial deformations. The BPS model is extended by
the higher-order corrections for the atomic binding, screening, exchange and
zero-point energies. The influence of the higher-order corrections on the
sequence of the outer crust is investigated.Comment: 7 page
Nuclear Ground-State Masses and Deformations
We tabulate the atomic mass excesses and nuclear ground-state deformations of
8979 nuclei ranging from O to . The calculations are based on the
finite-range droplet macroscopic model and the folded-Yukawa single-particle
microscopic model. Relative to our 1981 mass table the current results are
obtained with an improved macroscopic model, an improved pairing model with a
new form for the effective-interaction pairing gap, and minimization of the
ground-state energy with respect to additional shape degrees of freedom. The
values of only 9 constants are determined directly from a least-squares
adjustment to the ground-state masses of 1654 nuclei ranging from O to
106 and to 28 fission-barrier heights. The error of the mass model is
0.669~MeV for the entire region of nuclei considered, but is only 0.448~MeV for
the region above .Comment: 50 pages plus 20 PostScript figures and 160-page table obtainable by
anonymous ftp from t2.lanl.gov in directory masses, LA-UR-93-308
Stability of bubble nuclei through Shell-Effects
We investigate the shell structure of bubble nuclei in simple
phenomenological shell models and study their binding energy as a function of
the radii and of the number of neutron and protons using Strutinsky's method.
Shell effects come about, on the one hand, by the high degeneracy of levels
with large angular momentum and, on the other, by the big energy gaps between
states with a different number of radial nodes. Shell energies down to -40 MeV
are shown to occur for certain magic nuclei. Estimates demonstrate that the
calculated shell effects for certain magic numbers of constituents are probably
large enough to produce stability against fission, alpha-, and beta-decay. No
bubble solutions are found for mass number A < 450.Comment: 9 pages and 9 figures in the eps format include
- …