421 research outputs found

    "More than just a medical student”: a mixed methods exploration of a structured volunteering programme for undergraduate medical students

    Get PDF
    Background As a result of the COVID-19 pandemic Imperial College School of Medicine developed a structured volunteering programme involving 398 medical students, across eight teaching hospitals. This case study aims to illuminate the experiences of volunteers, mechanisms of learning and draw lessons for future emergencies and curriculum improvements. Methods Using an illuminative approach to evaluation we invited all volunteers and supervisors to complete a mixed-methods survey. This gathered nominal demographic information and qualitative data related to motivations, experiences, insights into learning, processual and contextual factors. Qualitative responses were coded, thematically organised, and categorised into an overarching framework. Mann-Whitney U tests determined whether volunteers’ overall rating of the experience varied according to demographic features and modulating factors. Spearman’s rank correlation assessed the relationship between aspects of induction and supervision, and overall volunteering rating. Follow up interviews were carried out with students to check back findings and co-create conclusions. Results Modulating factors identified through thematic analysis include altruistic motivation, engaged induction and supervision, feeling valued, having responsibility and freedom from the formal curriculum. Statistically significant positive correlations are identified between volunteers overall rating and being a year 1 or 2 student, ability to discuss role and ask questions during induction, being male, and having regular meetings and role support from supervisors. Qualitatively reported impacts include improved wellbeing, valuable contribution to service and transformative learning. Transformative learning effects included reframing of role within the multidisciplinary team, view of effective learning and view of themselves as competent clinicians. The number of weeks, number of shifts per week, and the role the volunteers performed, did not significantly impact experiences. Conclusions While acknowledging the uniqueness of the situation presented by the first wave COVID-19, we suggest the features of a successful service-learning programme include: a learner-centred induction, engaged and appreciative supervisors, and the entrustment of students with meaningful work with reciprocal benefits to services. Programmes in similar settings may find that 1) volunteering is best appreciated in years 1 or 2, 2) students with altruistic motivations and meaningful work may flourish without formal outcomes and assessments, and 3) that female volunteers may experience emergency learning differently to men

    Proceedings of the 2003 Winter Simulation Conference

    Get PDF
    In this paper we have applied an interval representation of time to represent and reason about activities, events, actions and situations relevant to the construction domain. The first part of the paper formally defines the situational simulation environment and develops a set of temporal axioms which can be used to 1) Express precedence constraints between time intervals and 2) Capture the causal relationships between actions and events. The second part of the paper looks at an agent reasoning mechanism used to perceive and predict actions and foresee future consequences of present actions within the simulation environment. Agent reasoning is based on awareness derived from a knowledge base of facts which captures the causal nature of events in the construction management domain

    The flood pulse in a semi-arid riparian forest:metabolic and biogeochemical responses to inter-flood interval

    Get PDF
    Flood pulse inundation of riparian forests alters rates of nutrient retention and organic matter processing in the aquatic ecosystems formed in the forest interior. Along the Middle Rio Grande (New Mexico, USA), impoundment and levee construction have created riparian forests that differ in their inter-flood intervals (IFIs) because some floodplains are still regularly inundated by the flood pulse (i.e., connected), while other floodplains remain isolated from flooding (i.e., disconnected). This research investigates how ecosystem responses to the flood pulse relate to forest IFI by quantifying nutrient and organic matter dynamics in the Rio Grande floodplain during three years of experimental flooding of the disconnected floodplain and during a single year of natural flooding of the connected floodplain. Surface and subsurface conditions in paired sites (control, flood) established in the two floodplain types were monitored to address metabolic and biogeochemical responses. Compared to dry controls, rates of respiration in the flooded sites increased by up to three orders of magnitude during the flood pulse. In the disconnected forest, month-long experimental floods produced widespread anoxia of four-week duration during each of the three years of flooding. In contrast, water in the connected floodplain remained well oxygenated (3-8 ppm). Material budgets for experimental floods showed the disconnected floodplain to be a sink for inorganic nitrogen and suspended solids, but a potential source of dissolved organic carbon (DOC). Compared to the main stem of the Rio Grande, flood-water on the connected floodplain contained less nitrate, but comparable concentrations of DOC, phosphate-phosphorus, and ammonium-nitrogen. Results suggest that floodplain IFI drives metabolic and biogeochemical responses during the flood pulse. Impoundment and fragmentation have altered floodplains from a mosaic of patches with variable IFI to a bimodal distribution. Relatively predictable flooding occurs in the connected forest, while inundation of the disconnected forest occurs only as the result of managed application of water. In semiarid floodplains, water is scarce except during the flood pulse. Ecosystem responses to the flood pulse are related to the IFI and other measures of flooding history that help describe spatial variation in ecosystem function

    Regulation of Human PINK1 ubiquitin kinase by Serine167, Serine228 and Cysteine412 phosphorylation.

    Get PDF
    Loss-of-function mutations in the human PINK1 kinase (hPINK1) are causative of early-onset Parkinson’s disease (PD). Activation of hPINK1 induces phosphorylated ubiquitin to initiate removal of damaged mitochondria by autophagy. Previously we solved the structure of the insect PINK1 orthologue, Tribolium castaneum PINK1, and showed that autophosphorylation of Ser205 was critical for ubiquitin interaction and phosphorylation (Kumar, Tamjar, Waddell et al., 2017). Here we report new findings on the regulation of hPINK1 by phosphorylation. We reconstitute E. coli expressed hPINK1 activity in vitro by direct incorporation of phosphoserine at the equivalent site Serine 228 (pSer228), providing direct evidence for a role for Ser228 phosphorylation in hPINK1 activation. Furthermore, using mass spectrometry, we identify six novel Ser/Thr autophosphorylation sites including regulatory Serine167 phosphorylation (pSer167), which in addition to pSer228 is required for ubiquitin recognition and phosphorylation. Strikingly, we also detect phosphorylation of a conserved Cysteine412 (pCys412) residue in the hPINK1 activation segment. Structural modelling suggests that pCys412 inhibits ubiquitin recognition and we demonstrate that mutation of Cys412 to Ala renders hPINK1 more active towards ubiquitin when expressed in human cells. These results outline new insights into hPINK1 activation by pSer167 and pSer228 and a novel inhibitory mechanism mediated by pCys412. These findings will aid in the development of small molecule activators of hPINK1

    Conflict and user involvement in drug misuse treatment decision-making: a qualitative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper examines client/staff conflict and user involvement in drug misuse treatment decision-making.</p> <p>Methods</p> <p>Seventy-nine in-depth interviews were conducted with new treatment clients in two residential and two community drug treatment agencies. Fifty-nine of these clients were interviewed again after twelve weeks. Twenty-seven interviews were also conducted with staff, who were the keyworkers for the interviewed clients.</p> <p>Results</p> <p>Drug users did not expect, desire or prepare for conflict at treatment entry. They reported few actual conflicts within the treatment setting, but routinely discussed latent conflicts – that is, negative experiences and problematic aspects of current or previous treatment that could potentially escalate into overt disputes. Conflict resulted in a number of possible outcomes, including the premature termination of treatment; staff deciding on the appropriate outcome; the client appealing to the governance structure of the agency; brokered compromise; and staff skilfully eliciting client consent for staff decisions.</p> <p>Conclusion</p> <p>Although the implementation of user involvement in drug treatment decision-making has the potential to trigger high levels of staff-client conflict, latent conflict is more common than overt conflict and not all conflict is negative. Drug users generally want to be co-operative at treatment entry and often adopt non-confrontational forms of covert resistance to decisions about which they disagree. Staff sometimes deploy user involvement as a strategy for managing conflict and soliciting client compliance to treatment protocols. Suggestions for minimising and avoiding harmful conflict in treatment settings are given.</p

    Phosphorylation of a splice variant of collapsin response mediator protein 2 in the nucleus of tumour cells links cyclin dependent kinase-5 to oncogenesis

    Get PDF
    Background Cyclin-dependent protein kinase-5 (CDK5) is an unusual member of the CDK family as it is not cell cycle regulated. However many of its substrates have roles in cell growth and oncogenesis, raising the possibility that CDK5 modulation could have therapeutic benefit. In order to establish whether changes in CDK5 activity are associated with oncogenesis one could quantify phosphorylation of CDK5 targets in disease tissue in comparison to appropriate controls. However the identity of physiological and pathophysiological CDK5 substrates remains the subject of debate, making the choice of CDK5 activity biomarkers difficult. Methods Here we use in vitro and in cell phosphorylation assays to identify novel features of CDK5 target sequence determinants that confer enhanced CDK5 selectivity, providing means to select substrate biomarkers of CDK5 activity with more confidence. We then characterize tools for the best CDK5 substrate we identified to monitor its phosphorylation in human tissue and use these to interrogate human tumour arrays. Results The close proximity of Arg/Lys amino acids and a proline two residues N-terminal to the phosphorylated residue both improve recognition of the substrate by CDK5. In contrast the presence of a proline two residues C-terminal to the target residue dramatically reduces phosphorylation rate. Serine-522 of Collapsin Response Mediator-2 (CRMP2) is a validated CDK5 substrate with many of these structural criteria. We generate and characterise phosphospecific antibodies to Ser522 and show that phosphorylation appears in human tumours (lung, breast, and lymphoma) in stark contrast to surrounding non-neoplastic tissue. In lung cancer the anti-phospho-Ser522 signal is positive in squamous cell carcinoma more frequently than adenocarcinoma. Finally we demonstrate that it is a specific and unusual splice variant of CRMP2 (CRMP2A) that is phosphorylated in tumour cells. Conclusions For the first time this data associates altered CDK5 substrate phosphorylation with oncogenesis in some but not all tumour types, implicating altered CDK5 activity in aspects of pathogenesis. These data identify a novel oncogenic mechanism where CDK5 activation induces CRMP2A phosphorylation in the nuclei of tumour cells
    • 

    corecore