49 research outputs found

    Nanotube field of C60 molecules in carbon nanotubes: atomistic versus continuous tube approach

    Full text link
    We calculate the van der Waals energy of a C60 molecule when it is encapsulated in a single-walled carbon nanotube with discrete atomistic structure. orientational degrees of freedom and longitudinal displacements of the molecule are taken into account, and several achiral and chiral carbon nanotubes are considered. A comparison with earlier work where the tube was approximated by a continuous cylindrical distribution of carbon atoms is made. We find that such an approximation is valid for high and intermediate tube radii; for low tube radii, minor chirality effects come into play. Three molecular orientational regimes are found when varying the nanotube radius.Comment: 14 pages, 9 figures, accepted for publication in Phys. Rev.

    How Sandcastles Fall

    Full text link
    Capillary forces significantly affect the stability of sandpiles. We analyze the stability of sandpiles with such forces, and find that the critical angle is unchanged in the limit of an infinitely large system; however, this angle is increased for finite-sized systems. The failure occurs in the bulk of the sandpile rather than at the surface. This is related to a standard result in soil mechanics. The increase in the critical angle is determined by the surface roughness of the particles, and exhibits three regimes as a function of the added-fluid volume. Our theory is in qualitative agreement with the recent experimental results of Hornbaker et al., although not with the interpretation they make of these results.Comment: 4 pages, 2 figures, revte

    Temperature dependence of the charge carrier mobility in gated quasi-one-dimensional systems

    Full text link
    The many-body Monte Carlo method is used to evaluate the frequency dependent conductivity and the average mobility of a system of hopping charges, electronic or ionic on a one-dimensional chain or channel of finite length. Two cases are considered: the chain is connected to electrodes and in the other case the chain is confined giving zero dc conduction. The concentration of charge is varied using a gate electrode. At low temperatures and with the presence of an injection barrier, the mobility is an oscillatory function of density. This is due to the phenomenon of charge density pinning. Mobility changes occur due to the co-operative pinning and unpinning of the distribution. At high temperatures, we find that the electron-electron interaction reduces the mobility monotonically with density, but perhaps not as much as one might intuitively expect because the path summation favour the in-phase contributions to the mobility, i.e. the sequential paths in which the carriers have to wait for the one in front to exit and so on. The carrier interactions produce a frequency dependent mobility which is of the same order as the change in the dc mobility with density, i.e. it is a comparably weak effect. However, when combined with an injection barrier or intrinsic disorder, the interactions reduce the free volume and amplify disorder by making it non-local and this can explain the too early onset of frequency dependence in the conductivity of some high mobility quasi-one-dimensional organic materials.Comment: 9 pages, 8 figures, to be published in Physical Review

    Aging in humid granular media

    Full text link
    Aging behavior is an important effect in the friction properties of solid surfaces. In this paper we investigate the temporal evolution of the static properties of a granular medium by studying the aging over time of the maximum stability angle of submillimetric glass beads. We report the effect of several parameters on these aging properties, such as the wear on the beads, the stress during the resting period, and the humidity content of the atmosphere. Aging effects in an ethanol atmosphere are also studied. These experimental results are discussed at the end of the paper.Comment: 7 pages, 9 figure

    Nanoelectromechanical coupling in fullerene peapods probed via resonant electrical transport experiments

    Full text link
    Fullerene peapods, that is carbon nanotubes encapsulating fullerene molecules, can offer enhanced functionality with respect to empty nanotubes. However, the present incomplete understanding of how a nanotube is affected by entrapped fullerenes is an obstacle for peapods to reach their full potential in nanoscale electronic applications. Here, we investigate the effect of C60 fullerenes on electron transport via peapod quantum dots. Compared to empty nanotubes, we find an abnormal temperature dependence of Coulomb blockade oscillations, indicating the presence of a nanoelectromechanical coupling between electronic states of the nanotube and mechanical vibrations of the fullerenes. This provides a method to detect the C60 presence and to probe the interplay between electrical and mechanical excitations in peapods, which thus emerge as a new class of nanoelectromechanical systems.Comment: 7 pages, 3 figures. Published in Nature Communications. Free online access to the published version until Sept 30th, 2010, see http://www.nature.com/ncomms/journal/v1/n4/abs/ncomms1034.htm

    How to detect fluctuating order in the high-temperature superconductors

    Full text link
    We discuss fluctuating order in a quantum disordered phase proximate to a quantum critical point, with particular emphasis on fluctuating stripe order. Optimal strategies for extracting information concerning such local order from experiments are derived with emphasis on neutron scattering and scanning tunneling microscopy. These ideas are tested by application to two model systems - the exactly solvable one dimensional electron gas with an impurity, and a weakly-interacting 2D electron gas. We extensively review experiments on the cuprate high-temperature superconductors which can be analyzed using these strategies. We adduce evidence that stripe correlations are widespread in the cuprates. Finally, we compare and contrast the advantages of two limiting perspectives on the high-temperature superconductor: weak coupling, in which correlation effects are treated as a perturbation on an underlying metallic (although renormalized) Fermi liquid state, and strong coupling, in which the magnetism is associated with well defined localized spins, and stripes are viewed as a form of micro-phase separation. We present quantitative indicators that the latter view better accounts for the observed stripe phenomena in the cuprates.Comment: 43 pages, 11 figures, submitted to RMP; extensively revised and greatly improved text; one new figure, one new section, two new appendices and more reference

    Wet Granular Materials

    Full text link
    Most studies on granular physics have focused on dry granular media, with no liquids between the grains. However, in geology and many real world applications (e.g., food processing, pharmaceuticals, ceramics, civil engineering, constructions, and many industrial applications), liquid is present between the grains. This produces inter-grain cohesion and drastically modifies the mechanical properties of the granular media (e.g., the surface angle can be larger than 90 degrees). Here we present a review of the mechanical properties of wet granular media, with particular emphasis on the effect of cohesion. We also list several open problems that might motivate future studies in this exciting but mostly unexplored field.Comment: review article, accepted for publication in Advances in Physics; tex-style change
    corecore