21,770 research outputs found
Implications of Lorentz covariance for the guidance equation in two-slit quantum interference
It is known that Lorentz covariance fixes uniquely the current and the
associated guidance law in the trajectory interpretation of quantum mechanics
for spin particles. In the non-relativistic domain this implies a guidance law
for the electron which differs by an additional spin-dependent term from that
originally proposed by de Broglie and Bohm. In this paper we explore some of
the implications of the modified guidance law. We bring out a property of
mutual dependence in the particle coordinates that arises in product states,
and show that the quantum potential has scalar and vector components which
implies the particle is subject to a Lorentz-like force. The conditions for the
classical limit and the limit of negligible spin are given, and the empirical
sufficiency of the model is demonstrated. We then present a series of
calculations of the trajectories based on two-dimensional Gaussian wave packets
which illustrate how the additional spin-dependent term plays a significant
role in structuring both the individual trajectories and the ensemble. The
single packet corresponds to quantum inertial motion. The distinct features
encountered when the wavefunction is a product or a superposition are explored,
and the trajectories that model the two-slit experiment are given. The latter
paths exhibit several new characteristics compared with the original de
Broglie-Bohm ones, such as crossing of the axis of symmetry.Comment: 27 pages including 6 pages of figure
Spin squeezing in optical lattice clocks via lattice-based QND measurements
Quantum projection noise will soon limit the best achievable precision of
optical atomic clocks based on lattice-confined neutral atoms. Squeezing the
collective atomic pseudo-spin via measurement of the clock state populations
during Ramsey interrogation suppresses the projection noise. We show here that
the lattice laser field can be used to perform ideal quantum non-demolition
measurements without clock shifts or decoherence and explore the feasibility of
such an approach in theory with the lattice field confined in a ring-resonator.
Detection of the motional sideband due to the atomic vibration in the lattice
wells can yield signal sizes a hundredfold above the projection noise limit.Comment: Substantially expanded versio
Recommended from our members
I-Xe analysis of a magnetic separate from Lodranite GRA95209
I-Xe dating of a magnetic mineral separate from lodranite GRA95209 suggests that peak temperatures (and therefore melt migration) occurred early, at least a few million years before closure of the I-Xe system in phosphates from Acapulco
Extreme non-linear response of ultra-narrow optical transitions in cavity QED for laser stabilization
We explore the potential of direct spectroscopy of ultra-narrow optical
transitions of atoms localized in an optical cavity. In contrast to
stabilization against a reference cavity, which is the approach currently used
for the most highly stabilized lasers, stabilization against an atomic
transition does not suffer from Brownian thermal noise. Spectroscopy of
ultra-narrow optical transitions in a cavity operates in a very highly
saturated regime in which non-linear effects such as bistability play an
important role. From the universal behavior of the Jaynes-Cummings model with
dissipation, we derive the fundamental limits for laser stabilization using
direct spectroscopy of ultra-narrow atomic lines. We find that with current
lattice clock experiments, laser linewidths of about 1 mHz can be achieved in
principle, and the ultimate limitations of this technique are at the 1 Hz
level.Comment: 5 pages, 4 figure
- …