11,447 research outputs found
Consequences of the Factorization Hypothesis in pbar p, pp, gamma p and gamma gamma Collisions
Using an eikonal analysis, we examine the validity of the factorization
theorem for nucleon-nucleon, gamma p and gamma gamma collisions. As an example,
using the additive quark model and meson vector dominance, we directly show
that for all energies and values of the eikonal, that the factorization theorem
sigma_{nn}/sigma_{gamma p} = sigma_{gamma p}/sigma_{gamma gamma} holds. We can
also compute the survival probability of large rapidity gaps in high energy
pbar p and pp collisions. We show that the survival probabilities are identical
(at the same energy) for gamma p and gamma gamma collisions, as well as for
nucleon-nucleon collisions. We further show that neither the factorization
theorem nor the reaction-independence of the survival probabilities depends on
the assumption of an additive quark model, but, more generally, depends on the
opacity of the eikonal being independent of whether the reaction is n-n, gamma
p or gamma gamma.Comment: 8 pages, Revtex, no figures. Expanded discussion, minor correction
'Just go away and do it and you get marks': the degradation of language teaching in neoliberal times
The marketization of education in countries like the UK may be seen as part and parcel of the rise of neoliberalism as the dominant shaper of policy and practice in many societies from the late twentieth century onwards. This paper explores how marketization has impacted on two initial teacher preparation programmes and focuses on the Cambridge English Certificate in English Language Teaching to Adults (CELTA) as a particular kind of market driven model. It begins with a discussion of neoliberalism, marketization and the conditions of labour in neoliberal capitalism, making clear the complexity of these phenomena as well as the serious implications that they have for language teacher education. It then moves to a consideration of data from a specific CELTA course where some of these key issues can be seen to play out in ways which we suggest give cause for concern. Our conclusion is that programmes of this type both index and reinforce a model of English as purely instrumental and disembedded from social context and a model of professional activity which is highly instrumental and emblematic of the kind of deskilling and discrediting which have occurred in many professional sectors in recent decades
A Dust-Penetrated Classification Scheme for Bars as Inferred from their Gravitational Force Fields
The division of galaxies into ``barred'' (SB) and ``normal'' (S) spirals is a
fundamental aspect of the Hubble galaxy classification system. This ``tuning
fork'' view was revised by de Vaucouleurs, whose classification volume
recognized apparent ``bar strength'' (SA, SAB, SB) as a continuous property of
galaxies called the ``family''. However, the SA, SAB, and SB families are
purely visual judgments that can have little bearing on the actual bar strength
in a given galaxy. Until very recently, published bar judgments were based
exclusively on blue light images, where internal extinction or star formation
can either mask a bar completely or give the false impression of a bar in a
nonbarred galaxy. Near-infrared camera arrays, which principally trace the old
stellar populations in both normal and barred galaxies, now facilitate a
quantification of bar strength in terms of their gravitational potentials and
force fields. In this paper, we show that the maximum value, Qb, of the ratio
of the tangential force to the mean radial force is a quantitative measure of
the strength of a bar. Qb does not measure bar ellipticity or bar shape, but
rather depends on the actual forcing due to the bar embedded in its disk. We
show that a wide range of true bar strengths characterizes the category ``SB'',
while de Vaucouleurs category ``SAB'' corresponds to a much narrower range of
bar strengths. We present Qb values for 36 galaxies, and we incorporate our bar
classes into a dust-penetrated classification system for spiral galaxies.Comment: Accepted for publication in the Astrophysical Journal (LaTex, 30
pages + 3 figures); Figs. 1 and 3 are in color and are also available at
http://bama.ua.edu/~rbuta/bars
Uncovering Spiral Structure in Flocculent Galaxies
We present K'(2.1 micron) observations of four nearby flocculent spirals,
which clearly show low-level spiral structure and suggest that kiloparsec-scale
spiral structure is more prevalent in flocculent spirals than previously
supposed. In particular, the prototypical flocculent spiral NGC 5055 is shown
to have regular, two-arm spiral structure to a radius of 4 kpc in the near
infrared, with an arm-interarm contrast of 1.3. The spiral structure in all
four galaxies is weaker than that in grand design galaxies. Taken in unbarred
galaxies with no large, nearby companions, these data are consistent with the
modal theory of spiral density waves, which maintains that density waves are
intrinsic to the disk. As an alternative, mechanisms for driving spiral
structure with non-axisymmetric perturbers are also discussed. These
observations highlight the importance of near infrared imaging for exploring
the range of physical environments in which large-scale dynamical processes,
such as density waves, are important.Comment: 12 pages AASTeX; 3 compressed PS figures can be retrieved from
ftp://ftp.astro.umd.edu/pub/michele as file thornley.tar (1.6Mbytes).
Accepted to Ap.J. Letters.(Figures now also available here, and from
ftp://ftp.astro.umd.edu/pub/michele , in GIF format.
A new numerical method for obtaining gluon distribution functions , from the proton structure function
An exact expression for the leading-order (LO) gluon distribution function
from the DGLAP evolution equation for the proton structure
function for deep inelastic scattering has
recently been obtained [M. M. Block, L. Durand and D. W. McKay, Phys. Rev.
D{\bf 79}, 014031, (2009)] for massless quarks, using Laplace transformation
techniques. Here, we develop a fast and accurate numerical inverse Laplace
transformation algorithm, required to invert the Laplace transforms needed to
evaluate , and compare it to the exact solution. We obtain accuracies
of less than 1 part in 1000 over the entire and spectrum. Since no
analytic Laplace inversion is possible for next-to-leading order (NLO) and
higher orders, this numerical algorithm will enable one to obtain accurate NLO
(and NNLO) gluon distributions, using only experimental measurements of
.Comment: 9 pages, 2 figure
Self-Consistent Response of a Galactic Disk to an Elliptical Perturbation Halo Potential
We calculate the self-consistent response of an axisymmetric galactic disk
perturbed by an elliptical halo potential of harmonic number m = 2, and obtain
the net disk ellipticity. Such a potential is commonly expected to arise due to
a galactic tidal encounter and also during the galaxy formation process. The
self-gravitational potential corresponding to the self-consistent,
non-axisymmetric density response of the disk is obtained by inversion of
Poisson equation for a thin disk. This response potential is shown to oppose
the perturbation potential, because physically the disk self-gravity resists
the imposed potential. This results in a reduction in the net ellipticity of
the perturbation halo potential in the disk plane. The reduction factor
denoting this decrease is independent of the strength of the perturbation
potential, and has a typical minimum value of 0.75 - 0.9 for a wide range of
galaxy parameters. The reduction is negligible at all radii for higher
harmonics (m > or = 3) of the halo potential. (abridged).Comment: 26 pages (LaTex- aastex style), 3 .eps figures. To appear in the
Astrophysical Journal, Vol. 542, Oct. 20, 200
Artificial Brains and Hybrid Minds
The paper develops two related thought experiments exploring variations on an ‘animat’ theme. Animats are hybrid devices with both artificial and biological components. Traditionally, ‘components’ have been construed in concrete terms, as physical parts or constituent material structures. Many fascinating issues arise within this context of hybrid physical organization. However, within the context of functional/computational theories of mentality, demarcations based purely on material structure are unduly narrow. It is abstract functional structure which does the key work in characterizing the respective ‘components’ of thinking systems, while the ‘stuff’ of material implementation is of secondary importance. Thus the paper extends the received animat paradigm, and investigates some intriguing consequences of expanding the conception of bio-machine hybrids to include abstract functional and semantic structure. In particular, the thought experiments consider cases of mind-machine merger where there is no physical Brain-Machine Interface: indeed, the material human body and brain have been removed from the picture altogether. The first experiment illustrates some intrinsic theoretical difficulties in attempting to replicate the human mind in an alternative material medium, while the second reveals some deep conceptual problems in attempting to create a form of truly Artificial General Intelligence
Recommended from our members
Harmonization of space-borne infra-red sensors measuring sea surface temperature
Sea surface temperature (SST) is observed by a constellation of sensors, and SST retrievals
are commonly combined into gridded SST analyses and climate data records (CDRs). Differential
biases between SSTs from different sensors cause errors in such products, including feature artefacts.
We introduce a new method for reducing differential biases across the SST constellation, by reconciling
the brightness temperature (BT) calibration and SST retrieval parameters between sensors. We use the
Advanced Along-Track Scanning Radiometer (AATSR) and the Sea and Land Surface Temperature
Radiometer (SLSTR) as reference sensors, and the Advanced Very High Resolution Radiometer
(AVHRR) of the MetOp-A mission to bridge the gap between these references. Observations across a
range of AVHRR zenith angles are matched with dual-view three-channel skin SST retrievals from
the AATSR and SLSTR. These skin SSTs act as the harmonization reference for AVHRR retrievals
by optimal estimation (OE). Parameters for the harmonized AVHRR OE are iteratively determined,
including BT bias corrections and observation error covariance matrices as functions of water-vapor
path. The OE SSTs obtained from AVHRR are shown to be closely consistent with the reference sensor
SSTs. Independent validation against drifting buoy SSTs shows that the AVHRR OE retrieval is stable
across the reference-sensor gap. We discuss that this method is suitable to improve consistency across
the whole constellation of SST sensors. The approach will help stabilize and reduce errors in future
SST CDRs, as well as having application to other domains of remote sensing
- …