63 research outputs found

    Quantum theory of light and noise polarization in nonlinear optics

    Full text link
    We present a consistent quantum theory of the electromagnetic field in nonlinearly responding causal media, with special emphasis on χ(2)\chi^{(2)} media. Starting from QED in linearly responding causal media, we develop a method to construct the nonlinear Hamiltonian expressed in terms of the complex nonlinear susceptibility in a quantum mechanically consistent way. In particular we show that the method yields the nonlinear noise polarization, which together with the linear one is responsible for intrinsic quantum decoherence.Comment: 4 pages, no figure

    Modelocked quantum dot vertical external cavity surface emitting laser

    Get PDF
    We report the first successful modelocking of a vertical external cavity surface emitting laser (VECSEL) with a quantum dot (QD) gain region. The VECSEL has a total of 35 QD-layers with an emission wavelength of about 1060 nm. In SESAM modelocked operation, we obtain an average output power of 27.4 mW with 18-ps pulses at a repetition rate of 2.57 GHz. This QD-VECSEL is used as-grown on a 450 μm thick substrate, which limits the average output powe

    Submonolayer Quantum Dots for High Speed Surface Emitting Lasers

    Get PDF
    We report on progress in growth and applications of submonolayer (SML) quantum dots (QDs) in high-speed vertical-cavity surface-emitting lasers (VCSELs). SML deposition enables controlled formation of high density QD arrays with good size and shape uniformity. Further increase in excitonic absorption and gain is possible with vertical stacking of SML QDs using ultrathin spacer layers. Vertically correlated, tilted or anticorrelated arrangements of the SML islands are realized and allow QD strain and wavefunction engineering. Respectively, both TE and TM polarizations of the luminescence can be achieved in the edge-emission using the same constituting materials. SML QDs provide ultrahigh modal gain, reduced temperature depletion and gain saturation effects when used in active media in laser diodes. Temperature robustness up to 100 °C for 0.98 μm range vertical-cavity surface-emitting lasers (VCSELs) is realized in the continuous wave regime. An open eye 20 Gb/s operation with bit error rates better than 10−12has been achieved in a temperature range 25–85 °Cwithout current adjustment. Relaxation oscillations up to ∼30 GHz have been realized indicating feasibility of 40 Gb/s signal transmission

    Investigation of Semiconductor Quantum Dots for Waveguide Electroabsorption Modulator

    Get PDF
    In this work, we investigated the use of 10-layer InAs quantum dot (QD) as active region of an electroabsorption modulator (EAM). The QD-EAM is a p-i-n ridge waveguide structure with intrinsic layer thickness of 0.4 μm, width of 10 μm, and length of 1.0 mm. Photocurrent measurement reveals a Stark shift of ~5 meV (~7 nm) at reverse bias of 3 V (75 kV/cm) and broadening of the resonance peak due to field ionization of electrons and holes was observed for E-field larger than 25 kV/cm. Investigation at wavelength range of 1,300–1320 nm reveals that the largest absorption change occurs at 1317 nm. Optical transmission measurement at this wavelength shows insertion loss of ~8 dB, and extinction ratio of ~5 dB at reverse bias of 5 V. Consequently, methods to improve the performance of the QD-EAM are proposed. We believe that QDs are promising for EAM and the performance of QD-EAM will improve with increasing research efforts
    • …
    corecore