2,504 research outputs found
Collective Modes in Strongly Coupled Elecronic Bilayer Liquids
We present the first reliable calculation of the collective mode structure of
a strongly coupled electronic bilayer. The calculation is based on a classical
model through the frequency-moment-sum-rule preserving Quasi Localized
Charge Approximation, using the recently calculated Hypernetted Chain pair
correlation functions. The spectrum shows an energy gap at and the
absence of a previously conjectured dynamical instability.Comment: 4 pages, 4 .ps figure
Simultaneous Absolute Timing of the Crab Pulsar at Radio and Optical Wavelengths
The Crab pulsar emits across a large part of the electromagnetic spectrum.
Determining the time delay between the emission at different wavelengths will
allow to better constrain the site and mechanism of the emission. We have
simultaneously observed the Crab Pulsar in the optical with S-Cam, an
instrument based on Superconducting Tunneling Junctions (STJs) with s time
resolution and at 2 GHz using the Nan\c{c}ay radio telescope with an instrument
doing coherent dedispersion and able to record giant pulses data. We have
studied the delay between the radio and optical pulse using simultaneously
obtained data therefore reducing possible uncertainties present in previous
observations. We determined the arrival times of the (mean) optical and radio
pulse and compared them using the tempo2 software package. We present the most
accurate value for the optical-radio lag of 255 21 s and suggest the
likelihood of a spectral dependence to the excess optical emission asociated
with giant radio pulses.Comment: 8 pages; accepted for publication in Astronomy and Astrophysic
Relation between Barrier Conductance and Coulomb Blockade Peak Splitting for Tunnel-Coupled Quantum Dots
We study the relation between the barrier conductance and the Coulomb
blockade peak splitting for two electrostatically equivalent dots connected by
tunneling channels with bandwidths much larger than the dot charging energies.
We note that this problem is equivalent to a well-known single-dot problem and
present solutions for the relation between peak splitting and barrier
conductance in both the weak and strong coupling limits. Results are in good
qualitative agreement with the experimental findings of F. R. Waugh et al.Comment: 19 pages (REVTeX 3.0), 3 Postscript figure
Corrections to the universal behavior of the Coulomb-blockade peak splitting for quantum dots separated by a finite barrier
Building upon earlier work on the relation between the dimensionless interdot
channel conductance g and the fractional Coulomb-blockade peak splitting f for
two electrostatically equivalent dots, we calculate the leading correction that
results from an interdot tunneling barrier that is not a delta-function but,
rather, has a finite height V and a nonzero width xi and can be approximated as
parabolic near its peak. We develop a new treatment of the problem for g much
less than 1 that starts from the single-particle eigenstates for the full
coupled-dot system. The finiteness of the barrier leads to a small upward shift
of the f-versus-g curve at small values of g. The shift is a consequence of the
fact that the tunneling matrix elements vary exponentially with the energies of
the states connected. Therefore, when g is small, it can pay to tunnel to
intermediate states with single-particle energies above the barrier height V.
The correction to the zero-width behavior does not affect agreement with recent
experimental results but may be important in future experiments.Comment: Title changed from ``Non-universal...'' to ``Corrections to the
universal...'' No other changes. 10 pages, 1 RevTeX file with 2 postscript
figures included using eps
Phases in Strongly Coupled Electronic Bilayer Liquids
The strongly correlated liquid state of a bilayer of charged particles has
been studied via the HNC calculation of the two-body functions. We report the
first time emergence of a series of structural phases, identified through the
behavior of the two-body functions.Comment: 5 pages, RevTEX 3.0, 4 ps figures; Submitted to Phys. Rev. Let
A Matrix Hyperbolic Cosine Algorithm and Applications
In this paper, we generalize Spencer's hyperbolic cosine algorithm to the
matrix-valued setting. We apply the proposed algorithm to several problems by
analyzing its computational efficiency under two special cases of matrices; one
in which the matrices have a group structure and an other in which they have
rank-one. As an application of the former case, we present a deterministic
algorithm that, given the multiplication table of a finite group of size ,
it constructs an expanding Cayley graph of logarithmic degree in near-optimal
O(n^2 log^3 n) time. For the latter case, we present a fast deterministic
algorithm for spectral sparsification of positive semi-definite matrices, which
implies an improved deterministic algorithm for spectral graph sparsification
of dense graphs. In addition, we give an elementary connection between spectral
sparsification of positive semi-definite matrices and element-wise matrix
sparsification. As a consequence, we obtain improved element-wise
sparsification algorithms for diagonally dominant-like matrices.Comment: 16 pages, simplified proof and corrected acknowledging of prior work
in (current) Section
Pulsar PSR B0656+14, the Monogem Ring, and the Origin of the `Knee' in the Primary Cosmic Ray Spectrum
The Monogem ring is a bright, diffuse, 25-degree-diameter supernova remnant
easily visible in soft X-ray images of the sky. Projected within the ring is a
young radio pulsar, PSR B0656+14. An association between the remnant and pulsar
has been considered, but was seemingly ruled out by the direction and magnitude
of the pulsar proper motion and by a distance estimate that placed the pulsar
twice as far from Earth as the remnant. Here we show that in fact the pulsar
was born very close to the center of the expanding remnant, both in distance
and projection. The inferred pulsar and remnant ages are in good agreement. The
conclusion that the pulsar and remnant were born in the same supernova
explosion is nearly inescapable. The remnant distance and age are in remarkable
concordance with the predictions of a model for the primary cosmic ray energy
spectrum in which the `knee' feature is produced by a single dominant source.Comment: 4 pages, to appear in the Astrophys. J. Lett. Full size color figure
can be found at http://www.thorsett.org/researc
An attempt to comprehend Martian weathering conditions through the analysis of terrestrial palagonite samples
Spectroscopic observations of the Martian surface in the invisible to near infrared (0.4-1.0 micron), coupled with measurements made by Viking, have shown that the surface is composed of a mixture of fine-grained weathered and nonweathered minerals. The majority of the weathered components are thought to be materials like smectite clays, scapolite, or palagonite. Until materials are returned for analysis there are two possible ways of proceeding with an investigation of Martian surface processes: (1) the study of weathering products in meteorites that have a Martian origin (SNC's), and (2) the analysis of certain terrestrial weathering products as analogs to the material found in SNC's, or predicted to be present on the Martian surface. We describe some preliminary measurements of the carbon chemistry of terrestrial palagonite samples that exhibit spectroscopic similarities with the Martian surface. The data should aid the understanding of weathering in SNC's and comparisons between terrestrial palagonites and the Martian surface
Sn Vacancies in Photorefractive Sn\u3csub\u3e2\u3c/sub\u3eP\u3csub\u3e2\u3c/sub\u3eS\u3csub\u3e6\u3c/sub\u3e Crystals: An Electron Paramagnetic Resonance Study of an Optically Active Hole Trap
Electron paramagnetic resonance (EPR) is used to identify the singly ionized charge state of the Sn vacancy (V−Sn) in single crystals of Sn2P2S6 (often referred to as SPS). These vacancies, acting as a hole trap, are expected to be important participants in the photorefractive effect observed in undoped SPS crystals. In as-grown crystals, the Sn vacancies are doubly ionized (V2−Sn) with no unpaired spins. They are then converted to a stable EPR-active state when an electron is removed (i.e., a hole is trapped) during an illumination below 100 K with 633 nm laser light. The resulting EPR spectrum has g-matrix principal values of 2.0079, 2.0231, and 1.9717. There are resolved hyperfine interactions with two P neighbors and one Sn neighbor. The isotropic portions of these hyperfine matrices are 167 and 79 MHz for the two 31P neighbors and 8504 MHz for the one Sn neighbor (this latter value is the average for 117Sn and 119Sn). These V−Sn vacancies are shallow acceptors with the hole occupying a diffuse wave function that overlaps the neighboring Sn2+ ion and (P2S6)4− anionic unit. Using a general-order kinetics approach, an analysis of isothermal decay curves of the V−Sn EPR spectrum in the 107–115 K region gives an activation energy of 283 meV
- …