3 research outputs found

    Nonequilibrium nuclear-electron spin dynamics in semiconductor quantum dots

    Full text link
    We study the spin dynamics in charged quantum dots in the situation where the resident electron is coupled to only about 200 nuclear spins and where the electron spin splitting induced by the Overhauser field does not exceed markedly the spectral broadening. The formation of a dynamical nuclear polarization as well as its subsequent decay by the dipole-dipole interaction is directly resolved in time. Because not limited by intrinsic nonlinearities, almost complete nuclear polarization is achieved, even at elevated temperatures. The data suggest a nonequilibrium mode of nuclear polarization, distinctly different from the spin temperature concept exploited on bulk semiconductorsComment: 5 pages, 4 figure

    Evidence for the Role of Instantons in Hadron Structure from Lattice QCD

    Full text link
    Cooling is used as a filter on a set of gluon fields sampling the Wilson action to selectively remove essentially all fluctuations of the gluon field except for the instantons. The close agreement between quenched lattice QCD results with cooled and uncooled configurations for vacuum correlation functions of hadronic currents and for density-density correlation functions in hadronic bound states provides strong evidence for the dominant role of instantons in determining light hadron structure and quark propagation in the QCD vacuum.Comment: 26 pages in REVTeX, plus 10 figures, uuencoded. Submitted to Physical Review D. MIT-CTP-226

    Two-photon spin injection in semiconductors

    Full text link
    A comparison is made between the degree of spin polarization of electrons excited by one- and two-photon absorption of circularly polarized light in bulk zincblende semiconductors. Time- and polarization-resolved experiments in (001)-oriented GaAs reveal an initial degree of spin polarization of 49% for both one- and two-photon spin injection at wavelengths of 775 and 1550 nm, in agreement with theory. The macroscopic symmetry and microscopic theory for two-photon spin injection are reviewed, and the latter is generalized to account for spin-splitting of the bands. The degree of spin polarization of one- and two-photon optical orientation need not be equal, as shown by calculations of spectra for GaAs, InP, GaSb, InSb, and ZnSe using a 14x14 k.p Hamiltonian including remote band effects. By including the higher conduction bands in the calculation, cubic anisotropy and the role of allowed-allowed transitions can be investigated. The allowed-allowed transitions do not conserve angular momentum and can cause a high degree of spin polarization close to the band edge; a value of 78% is calculated in GaSb, but by varying the material parameters it could be as high as 100%. The selection rules for spin injection from allowed-allowed transitions are presented, and interband spin-orbit coupling is found to play an important role.Comment: 12 pages including 7 figure
    corecore