1,605 research outputs found

    Multiple barriers in forced rupture of protein complexes

    Full text link
    Curvatures in the most probable rupture force (fβˆ—f^*) versus log-loading rate (log⁑rf\log{r_f}) observed in dynamic force spectroscopy (DFS) on biomolecular complexes are interpreted using a one-dimensional free energy profile with multiple barriers or a single barrier with force-dependent transition state. Here, we provide a criterion to select one scenario over another. If the rupture dynamics occurs by crossing a single barrier in a physical free energy profile describing unbinding, the exponent Ξ½\nu, from (1βˆ’fβˆ—/fc)1/ν∼(log⁑rf)(1- f^*/f_c)^{1/\nu}\sim(\log r_f) with fcf_c being a critical force in the absence of force, is restricted to 0.5≀ν≀10.5 \leq \nu \leq 1. For biotin-ligand complexes and leukocyte-associated antigen-1 bound to intercellular adhesion molecules, which display large curvature in the DFS data, fits to experimental data yield Ξ½<0.5\nu<0.5, suggesting that ligand unbinding is associated with multiple-barrier crossing.Comment: 8 pages, 5 figure

    Directly measuring single molecule heterogeneity using force spectroscopy

    Full text link
    One of the most intriguing results of single molecule experiments on proteins and nucleic acids is the discovery of functional heterogeneity: the observation that complex cellular machines exhibit multiple, biologically active conformations. The structural differences between these conformations may be subtle, but each distinct state can be remarkably long-lived, with random interconversions between states occurring only at macroscopic timescales, fractions of a second or longer. Though we now have proof of functional heterogeneity in a handful of systems---enzymes, motors, adhesion complexes---identifying and measuring it remains a formidable challenge. Here we show that evidence of this phenomenon is more widespread than previously known, encoded in data collected from some of the most well-established single molecule techniques: AFM or optical tweezer pulling experiments. We present a theoretical procedure for analyzing distributions of rupture/unfolding forces recorded at different pulling speeds. This results in a single parameter, quantifying the degree of heterogeneity, and also leads to bounds on the equilibration and conformational interconversion timescales. Surveying ten published datasets, we find heterogeneity in five of them, all with interconversion rates slower than 10 sβˆ’1^{-1}. Moreover, we identify two systems where additional data at realizable pulling velocities is likely to find a theoretically predicted, but so far unobserved cross-over regime between heterogeneous and non-heterogeneous behavior. The significance of this regime is that it will allow far more precise estimates of the slow conformational switching times, one of the least understood aspects of functional heterogeneity.Comment: Main text: 13 pages, 6 figures; SI: 9 pages, 6 figure

    Urea-induced denaturation of PreQ1-riboswitch

    Get PDF
    Urea, a polar molecule with a large dipole moment, not only destabilizes the folded RNA structures, but can also enhance the folding rates of large ribozymes. Unlike the mechanism of urea-induced unfolding of proteins, which is well understood, the action of urea on RNA has barely been explored. We performed extensive all atom molecular dynamics (MD) simulations to determine the molecular underpinnings of urea-induced RNA denaturation. Urea displays its denaturing power in both secondary and tertiary motifs of the riboswitch (RS) structure. Our simulations reveal that the denaturation of RNA structures is mainly driven by the hydrogen bonds and stacking interactions of urea with the bases. Through detailed studies of the simulation trajectories, we found that geminate pairs between urea and bases due to hydrogen bonds and stacks persist only ~ (0.1-1) ns, which suggests that urea-base interaction is highly dynamic. Most importantly, the early stage of base pair disruption is triggered by penetration of water molecules into the hydrophobic domain between the RNA bases. The infiltration of water into the narrow space between base pairs is critical in increasing the accessibility of urea to transiently disrupted bases, thus allowing urea to displace inter base hydrogen bonds. This mechanism, water-induced disruption of base-pairs resulting in the formation of a "wet" destabilized RNA followed by solvation by urea, is the exact opposite of the two-stage denaturation of proteins by urea. In the latter case, initial urea penetration creates a dry-globule, which is subsequently solvated by water penetration leading to global protein unfolding. Our work shows that the ability to interact with both water and polar, non-polar components of nucleotides makes urea a powerful chemical denaturant for nucleic acids.Comment: 41 pages, 18 figure

    Pathways and kinetic barriers in mechanical unfolding and refolding of RNA and proteins

    Get PDF
    Using self-organized polymer models, we predict mechanical unfolding and refolding pathways of ribo-zymes, and the green fluorescent protein. In agreement with experiments, there are between six and eight unfolding transitions in the Tetrahymena ribozyme. Depending on the loading rate, the number of rips in the force-ramp unfolding of the Azoarcus ribozymes is between two and four. Force-quench refolding of the P4-P6 subdomain of the Tetrahymena ribozyme occurs through a compact intermediate. Subsequent formation of tertiary contacts between helices P5b-P6a and P5a/P5c-P4 leads to the native state. The force-quench refolding pathways agree with ensemble experiments. In the dominant unfolding route, the N-terminal a helix of GFP unravels first, followed by disruption of the N terminus b strand. There is a third intermediate that involves disruption of three other strands. In accord with experiments, the force-quench refolding pathway of GFP is hierarchic, with the rate-limiting step being the closure of the barrel.Comment: 33 pages 7 figure
    • …
    corecore