74 research outputs found
EVM and Achievable Data Rate Analysis of Clipped OFDM Signals in Visible Light Communication
Orthogonal frequency division multiplexing (OFDM) has been considered for
visible light communication (VLC) thanks to its ability to boost data rates as
well as its robustness against frequency-selective fading channels. A major
disadvantage of OFDM is the large dynamic range of its time-domain waveforms,
making OFDM vulnerable to nonlinearity of light emitting diodes (LEDs). DC
biased optical OFDM (DCO-OFDM) and asymmetrically clipped optical OFDM
(ACO-OFDM) are two popular OFDM techniques developed for the VLC. In this
paper, we will analyze the performance of the DCO-OFDM and ACO-OFDM signals in
terms of error vector magnitude (EVM), signal-to-distortion ratio (SDR), and
achievable data rates under both average optical power and dynamic optical
power constraints. EVM is a commonly used metric to characterize distortions.
We will describe an approach to numerically calculate the EVM for DCO-OFDM and
ACO-OFDM. We will derive the optimum biasing ratio in the sense of minimizing
EVM for DCO-OFDM. Additionally, we will formulate the EVM minimization problem
as a convex linear optimization problem and obtain an EVM lower bound against
which to compare the DCO-OFDM and ACO-OFDM techniques. We will prove that the
ACO-OFDM can achieve the lower bound. Average optical power and dynamic optical
power are two main constraints in VLC. We will derive the achievable data rates
under these two constraints for both additive white Gaussian noise (AWGN)
channel and frequency-selective channel. We will compare the performance of
DCO-OFDM and ACO-OFDM under different power constraint scenarios
Simultaneous genotyping of multiple polymorphisms in human serotonin transporter gene and detection of novel allelic variants
The serotonin transporter, called SLC6A4, SERT or 5-HTT, modulates neurotransmission by removal of serotonin from the synapse of serotonergic neurons, facilitating serotonin reuptake into the presynaptic terminus. Selective serotonin reuptake inhibitors block the action of the serotonin transporter and are used to treat depression and other neuropsychiatric disorders. Three polymorphisms in the 5-HTT gene have been implicated in treatment response and neuropsychiatric disorders. A 44-bp promoter ins/del polymorphism (5-HTTLPR) produces primarily long and/or short alleles due to either 14 (short) or 16 (long) repeats of variably conserved 20–23 bp units. Also implicated, a 17–18 bp variable number tandem repeat found in intron2 (StIn2) is expressed as triallelic content with 9, 10, or 12 repeats (StIn2.9, StIn2.10 or StIn2.12). Finally, a single nucleotide polymorphism rs25531 located within the promoter polymorphic-linked region alters the function of the long promoter allele. We developed a PCR-based fragment analysis assay, which is analyzed on an ABI sequencer, whereby we are able to detect all three genotypes simultaneously. Using this technique, we identified novel sequences, which demonstrate promoter repeat regions containing (1) a 17 repeat with rs25531 A/G polymorphism, (2) two with 18-repeat units, (3) one with 20-repeat units and (4) a 24-repeat sequence. The novel repeats were confirmed by direct sequencing of gel-purified amplicons
Population-based study of genetic variation in individuals with autism spectrum disorders from Croatia
<p>Abstract</p> <p>Background</p> <p>Genome-wide studies on autism spectrum disorders (ASDs) have mostly focused on large-scale population samples, but examination of rare variations in isolated populations may provide additional insights into the disease pathogenesis.</p> <p>Methods</p> <p>As a first step in the genetic analysis of ASD in Croatia, we characterized genetic variation in a sample of 103 subjects with ASD and 203 control individuals, who were genotyped using the Illumina HumanHap550 BeadChip. We analyzed the genetic diversity of the Croatian population and its relationship to other populations, the degree of relatedness via Runs of Homozygosity (ROHs), and the distribution of large (>500 Kb) copy number variations.</p> <p>Results</p> <p>Combining the Croatian cohort with several previously published populations in the FastME analysis (an alternative to Neighbor Joining) revealed that Croatian subjects cluster, as expected, with Southern Europeans; in addition, individuals from the same geographic region within Europe cluster together. Whereas Croatian subjects could be separated from a sample of healthy control subjects of European origin from North America, Croatian ASD cases and controls are well mixed. A comparison of runs of homozygosity indicated that the number and the median length of regions of homozygosity are higher for ASD subjects than for controls (p = 6 × 10<sup>-3</sup>). Furthermore, analysis of copy number variants found a higher frequency of large chromosomal rearrangements (>2 Mb) in ASD cases (5/103) than in ethnically matched control subjects (1/197, p = 0.019).</p> <p>Conclusions</p> <p>Our findings illustrate the remarkable utility of high-density genotype data for subjects from a limited geographic area in dissecting genetic heterogeneity with respect to population and disease related variation.</p
Brain Region–Specific Decrease in the Activity and Expression of Protein Kinase A in the Frontal Cortex of Regressive Autism
Autism is a severe neurodevelopmental disorder that is characterized by impaired language, communication, and social skills. In regressive autism, affected children first show signs of normal social and language development but eventually lose these skills and develop autistic behavior. Protein kinases are essential in G-protein-coupled, receptor-mediated signal transduction and are involved in neuronal functions, gene expression, memory, and cell differentiation. We studied the activity and expression of protein kinase A (PKA), a cyclic AMP–dependent protein kinase, in postmortem brain tissue samples from the frontal, temporal, parietal, and occipital cortices, and the cerebellum of individuals with regressive autism; autistic subjects without a clinical history of regression; and age-matched developmentally normal control subjects. The activity of PKA and the expression of PKA (C-α), a catalytic subunit of PKA, were significantly decreased in the frontal cortex of individuals with regressive autism compared to control subjects and individuals with non-regressive autism. Such changes were not observed in the cerebellum, or the cortices from the temporal, parietal, and occipital regions of the brain in subjects with regressive autism. In addition, there was no significant difference in PKA activity or expression of PKA (C-α) between non-regressive autism and control groups. These results suggest that regression in autism may be associated, in part, with decreased PKA-mediated phosphorylation of proteins and abnormalities in cellular signaling
Parental Depressive Feelings, Parental Support, and the Serotonin Transporter Gene as Predictors of Adolescent Depressive Feelings: A Latent Growth Curve Analysis
Parental support and parental depressive feelings are found to be associated with depressive feelings in adolescent boys and girls, but results are inconsistent. In addition, the 5-HTTLPR genotype has been found to interact with environmental stressors in predicting adolescents’ depressive feelings, but this has not been examined longitudinally. Therefore, the present study examined the relationships between parental support, parental depressive feelings, and adolescent depressive feelings. In addition, the relationships between the 5-HTTLPR genotype and adolescent depressive feelings were explored, as well as gene-environment interactions. Adolescents (N = 306; Girls = 53.3%; Mage T1 = 13.4) filled out questionnaires at five annual waves and provided saliva samples for DNA. Latent growth curve modelling (LGCM) was used to examine the baseline level and the change in depressive feelings over time. Maternal support was related to baseline levels of depressive feelings in girls, whereas paternal support was related to baseline levels in boys. Paternal depressive feelings were only related to boys’ depressive feelings at baseline, and maternal depressive feelings were not related to any outcome measures. Furthermore, no associations were found between 5-HTTLPR genotype and adolescent depressive feelings, and no gene-environment interactions emerged. Limitations of the study and implications of the findings are discussed
From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways
The human body hosts an enormous abundance and diversity of microbes, which perform a range of essential and beneficial functions. Our appreciation of the importance of these microbial communities to many aspects of human physiology has grown dramatically in recent years. We know, for example, that animals raised in a germ-free environment exhibit substantially altered immune and metabolic function, while the disruption of commensal microbiota in humans is associated with the development of a growing number of diseases. Evidence is now emerging that, through interactions with the gut-brain axis, the bidirectional communication system between the central nervous system and the gastrointestinal tract, the gut microbiome can also influence neural development, cognition and behaviour, with recent evidence that changes in behaviour alter gut microbiota composition, while modifications of the microbiome can induce depressive-like behaviours. Although an association between enteropathy and certain psychiatric conditions has long been recognized, it now appears that gut microbes represent direct mediators of psychopathology. Here, we examine roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness. Further, we discuss how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies.GB Rogers, DJ Keating, RL Young, M-L Wong, J Licinio, and S Wesseling
Lower-alcohol wines produced by Metschnikowia pulcherrima and Saccharomyces cerevisiae co-fermentations: the effect of sequential inoculation timing
In Latin, ‘pulcherrima’ is a superlative form of an adjective that translates as beautiful. Apart from being ‘the most beautiful’ yeast, Metschnikowia pulcherrima has a remarkable potential in production of wines with lower ethanol content. The oenological performance of six M. pulcherrima strains was hereby tested in sequential cultures with Saccharomyces cerevisiae. The best-performing strain MP2 was further characterised in fermentations with different S. cerevisiae inoculation delays in both white grape juice and Chemically Defined Grape Juice Medium (CDGJM). The analysis of main metabolites, undertaken prior to sequential inoculations and upon fermentation completion, highlighted metabolic interactions and carbon sinks other than ethanol in MP2 treatments. Depending on the inoculation delay, MP2 white wines contained between 0.6% and 1.2% (v/v) less ethanol than the S. cerevisiae monoculture, with even larger decreases detected in the CDGJM. The MP2 treatments also contained higher concentrations of TCA cycle by-products (i.e. fumarate and succinate) and glycerol, and lower concentrations of acetic acid. The analysis of volatile compounds showed increased production of acetate esters and higher alcohols in all MP2 wines, alongside other compositional alterations arising from the S. cerevisiae inoculation delay.Ana Hranilovic, Joanna M. Gambetta, David W. Jeffery, Paul R. Grbin, Vladimir Jirane
- …