1,246 research outputs found

    Coupling between static friction force and torque for a tripod

    Full text link
    If a body is resting on a flat surface, the maximal static friction force before motion sets in is reduced if an external torque is also applied. The coupling between the static friction force and static friction torque is nontrivial as our studies for a tripod lying on horizontal flat surface show. In this article we report on a series of experiments we performed on a tripod and compare these with analytical and numerical solutions. It turns out that the coupling between force and torque reveals information about the microscopic properties at the onset to sliding.Comment: 7 pages, 4 figures, revte

    Binary spreading process with parity conservation

    Full text link
    Recently there has been a debate concerning the universal properties of the phase transition in the pair contact process with diffusion (PCPD) 2A→3A,2A→∅2A\to 3A, 2A\to \emptyset. Although some of the critical exponents seem to coincide with those of the so-called parity-conserving universality class, it was suggested that the PCPD might represent an independent class of phase transitions. This point of view is motivated by the argument that the PCPD does not conserve parity of the particle number. In the present work we pose the question what happens if the parity conservation law is restored. To this end we consider the the reaction-diffusion process 2A→4A,2A→∅2A\to 4A, 2A\to \emptyset. Surprisingly this process displays the same type of critical behavior, leading to the conclusion that the most important characteristics of the PCPD is the use of binary reactions for spreading, regardless of whether parity is conserved or not.Comment: RevTex, 4pages, 4 eps figure

    Epidemic spreading with immunization and mutations

    Full text link
    The spreading of infectious diseases with and without immunization of individuals can be modeled by stochastic processes that exhibit a transition between an active phase of epidemic spreading and an absorbing phase, where the disease dies out. In nature, however, the transmitted pathogen may also mutate, weakening the effect of immunization. In order to study the influence of mutations, we introduce a model that mimics epidemic spreading with immunization and mutations. The model exhibits a line of continuous phase transitions and includes the general epidemic process (GEP) and directed percolation (DP) as special cases. Restricting to perfect immunization in two spatial dimensions we analyze the phase diagram and study the scaling behavior along the phase transition line as well as in the vicinity of the GEP point. We show that mutations lead generically to a crossover from the GEP to DP. Using standard scaling arguments we also predict the form of the phase transition line close to the GEP point. It turns out that the protection gained by immunization is vitally decreased by the occurrence of mutations.Comment: 9 pages, 13 figure

    Stochastic Model and Equivalent Ferromagnetic Spin Chain with Alternation

    Full text link
    We investigate a non-equilibrium reaction-diffusion model and equivalent ferromagnetic spin 1/2 XY spin chain with alternating coupling constant. The exact energy spectrum and the n-point hole correlations are considered with the help of the Jordan-Wigner fermionization and the inter-particle distribution function method. Although the Hamiltonian has no explicit translational symmetry, the translational invariance is recovered after long time due to the diffusion. We see the scaling relations for the concentration and the two-point function in finite size analysis.Comment: 7 pages, LaTeX file, to appear in J. Phys. A: Math. and Ge

    Long-range epidemic spreading with immunization

    Full text link
    We study the phase transition between survival and extinction in an epidemic process with long-range interactions and immunization. This model can be viewed as the well-known general epidemic process (GEP) in which nearest-neighbor interactions are replaced by Levy flights over distances r which are distributed as P(r) ~ r^(-d-sigma). By extensive numerical simulations we confirm previous field-theoretical results obtained by Janssen et al. [Eur. Phys. J. B7, 137 (1999)].Comment: LaTeX, 14 pages, 4 eps figure

    Maximal Localisation in the Presence of Minimal Uncertainties in Positions and Momenta

    Get PDF
    Small corrections to the uncertainty relations, with effects in the ultraviolet and/or infrared, have been discussed in the context of string theory and quantum gravity. Such corrections lead to small but finite minimal uncertainties in position and/or momentum measurements. It has been shown that these effects could indeed provide natural cutoffs in quantum field theory. The corresponding underlying quantum theoretical framework includes small `noncommutative geometric' corrections to the canonical commutation relations. In order to study the full implications on the concept of locality it is crucial to find the physical states of then maximal localisation. These states and their properties have been calculated for the case with minimal uncertainties in positions only. Here we extend this treatment, though still in one dimension, to the general situation with minimal uncertainties both in positions and in momenta.Comment: Latex, 21 pages, 2 postscript figure

    First order phase transition with a logarithmic singularity in a model with absorbing states

    Full text link
    Recently, Lipowski [cond-mat/0002378] investigated a stochastic lattice model which exhibits a discontinuous transition from an active phase into infinitely many absorbing states. Since the transition is accompanied by an apparent power-law singularity, it was conjectured that the model may combine features of first- and second-order phase transitions. In the present work it is shown that this singularity emerges as an artifact of the definition of the model in terms of products. Instead of a power law, we find a logarithmic singularity at the transition. Moreover, we generalize the model in such a way that the second-order phase transition becomes accessible. As expected, this transition belongs to the universality class of directed percolation.Comment: revtex, 4 pages, 5 eps figure

    On Matrix Product Ground States for Reaction-Diffusion Models

    Full text link
    We discuss a new mechanism leading to a matrix product form for the stationary state of one-dimensional stochastic models. The corresponding algebra is quadratic and involves four different matrices. For the example of a coagulation-decoagulation model explicit four-dimensional representations are given and exact expressions for various physical quantities are recovered. We also find the general structure of nn-point correlation functions at the phase transition.Comment: LaTeX source, 7 pages, no figure
    • …
    corecore