1,096 research outputs found
How to Commission, Operate and Maintain a Large Future Accelerator Complex from Far Remote
A study on future large accelerators [1] has considered a facility, which is
designed, built and operated by a worldwide collaboration of equal partner
institutions, and which is remote from most of these institutions. The full
range of operation was considered including commi-ssioning, machine
development, maintenance, trouble shooting and repair. Experience from existing
accele-rators confirms that most of these activities are already performed
'remotely'. The large high-energy physics ex-periments and astronomy projects,
already involve inter-national collaborations of distant institutions. Based on
this experience, the prospects for a machine operated remotely from far sites
are encouraging. Experts from each laboratory would remain at their home
institution but continue to participate in the operation of the machine after
construction. Experts are required to be on site only during initial
commissioning and for par-ticularly difficult problems. Repairs require an
on-site non-expert maintenance crew. Most of the interventions can be made
without an expert and many of the rest resolved with remote assistance. There
appears to be no technical obstacle to controlling an accelerator from a
distance. The major challenge is to solve the complex management and
communication problems.Comment: ICALEPCS 2001 abstract ID No. FRBI001 invited talk submitting author
F. Willeke 5 pages, 1 figur
A novel, high-sensitivity, bacteriophage-based assay identifies low level Mycobacterium tuberculosis bacteraemia in immunocompetent patients with active and incipient tuberculosis
Haematogenous dissemination of M. tuberculosis (Mtb) is critical to pathogenesis of progressive tuberculous infection in animal models. Using a novel phage-based blood assay, we report the first concordant evidence in well-characterised immunocompetent human cohorts, demonstrating associations of Mtb bacteraemia with progressive phenotypes of latent infection and active pulmonary TB respectively
pp elastic scattering for incident momenta between 1.0 and 2.50 BeV/c
This is a report on a measurement of pp elastic scattering for 30° †0 c.m. †90° and for incident momenta between 1.0 and 2.50 BeV/c. In the past rather extensive counter measurements(1) of this cross section have been made at high energies and low momentum transfers, but little counter data exist at large momentum transfer. The hydrogen bubble chambers(2,3) have produced data between 3.0 and 4.0 BeV/c, but the number of events at large momentum transfer is limited and the statistical accuracy is poor
Studies of the decays D^0 \rightarrow K_S^0K^-\pi^+ and D^0 \rightarrow K_S^0K^+\pi^-
The first measurements of the coherence factor R_{K_S^0K\pi} and the average
strong--phase difference \delta^{K_S^0K\pi} in D^0 \to K_S^0 K^\mp\pi^\pm
decays are reported. These parameters can be used to improve the determination
of the unitary triangle angle \gamma\ in B^- \rightarrow
decays, where is either a D^0 or a D^0-bar meson decaying to
the same final state, and also in studies of charm mixing. The measurements of
the coherence factor and strong-phase difference are made using
quantum-correlated, fully-reconstructed D^0D^0-bar pairs produced in e^+e^-
collisions at the \psi(3770) resonance. The measured values are R_{K_S^0K\pi} =
0.70 \pm 0.08 and \delta^{K_S^0K\pi} = (0.1 \pm 15.7) for an
unrestricted kinematic region and R_{K*K} = 0.94 \pm 0.12 and \delta^{K*K} =
(-16.6 \pm 18.4) for a region where the combined K_S^0 \pi^\pm
invariant mass is within 100 MeV/c^2 of the K^{*}(892)^\pm mass. These results
indicate a significant level of coherence in the decay. In addition, isobar
models are presented for the two decays, which show the dominance of the
K^*(892)^\pm resonance. The branching ratio {B}(D^0 \rightarrow
K_S^0K^+\pi^-)/{B}(D^0 \rightarrow K_S^0K^-\pi^+) is determined to be 0.592 \pm
0.044 (stat.) \pm 0.018 (syst.), which is more precise than previous
measurements.Comment: 38 pages. Version 3 updated to include the erratum information.
Errors corrected in Eqs (25), (26), 28). Fit results updated accordingly, and
external inputs updated to latest best known values. Typo corrected in Eq(3)-
no other consequence
- âŠ