24 research outputs found
Microscopic View on the Ultrafast Photoluminescence from Photoexcited Graphene
We present a joint theory-experiment study on ultrafast photoluminescence from photoexcited graphene. On the basis of a microscopic theory, we reveal two distinct mechanisms behind the occurring photoluminescence: besides the well-known incoherent contribution driven by nonequilibrium carrier occupations, we found a coherent part that spectrally shifts with the excitation energy. In our experiments, we demonstrate for the first time the predicted appearance and spectral shift of the coherent photoluminescence
Elucidating the localized plasmonic enhancement effects from a single Ag nanowire in organic solar cells
The origins of performance enhancement in hybrid plasmonic organic photovoltaic devices are often embroiled in a complex interaction of light scattering, localized surface plasmon resonances, excitonâplasmon energy transfer and even nonplasmonic effects. To clearly deconvolve the plasmonic contributions from a single nanostructure, we herein investigate the influence of a single silver nanowire (NW) on the charge carriers in bulk heterojunction polymer solar cells using spatially resolved optical spectroscopy, and correlate to electrical device characterization. Polarization-dependent photocurrent enhancements with a maximum of âŒ36% over the reference are observed when the transverse mode of the plasmonic excitations in the Ag NW is activated. The ensuing higher absorbance and light scattering induced by the electronic motion perpendicular to the NW long axis lead to increased exciton and polaron densities instead of direct surface plasmon-exciton energy transfer. Finite-difference time-domain simulations also validate these findings. Importantly, our study at the single nanostructure level explores the fundamental limits of plasmonic enhancement achievable in organic solar cells with a single plasmonic nanostructure.Accepted versio