3 research outputs found

    The Parallel Complexity of Growth Models

    Full text link
    This paper investigates the parallel complexity of several non-equilibrium growth models. Invasion percolation, Eden growth, ballistic deposition and solid-on-solid growth are all seemingly highly sequential processes that yield self-similar or self-affine random clusters. Nonetheless, we present fast parallel randomized algorithms for generating these clusters. The running times of the algorithms scale as O(log2N)O(\log^2 N), where NN is the system size, and the number of processors required scale as a polynomial in NN. The algorithms are based on fast parallel procedures for finding minimum weight paths; they illuminate the close connection between growth models and self-avoiding paths in random environments. In addition to their potential practical value, our algorithms serve to classify these growth models as less complex than other growth models, such as diffusion-limited aggregation, for which fast parallel algorithms probably do not exist.Comment: 20 pages, latex, submitted to J. Stat. Phys., UNH-TR94-0
    corecore