3 research outputs found
The Parallel Complexity of Growth Models
This paper investigates the parallel complexity of several non-equilibrium
growth models. Invasion percolation, Eden growth, ballistic deposition and
solid-on-solid growth are all seemingly highly sequential processes that yield
self-similar or self-affine random clusters. Nonetheless, we present fast
parallel randomized algorithms for generating these clusters. The running times
of the algorithms scale as , where is the system size, and the
number of processors required scale as a polynomial in . The algorithms are
based on fast parallel procedures for finding minimum weight paths; they
illuminate the close connection between growth models and self-avoiding paths
in random environments. In addition to their potential practical value, our
algorithms serve to classify these growth models as less complex than other
growth models, such as diffusion-limited aggregation, for which fast parallel
algorithms probably do not exist.Comment: 20 pages, latex, submitted to J. Stat. Phys., UNH-TR94-0