678 research outputs found

    Quantum States Allowing Minimum Uncertainty Product of angular position and momentum

    Full text link
    We provide necessary and sufficient conditions for states to have an arbitrarily small uncertainty product of the azimuthal angle ϕ\phi and its canonical moment LzL_{z}. We illustrate our results with analytical examples

    The Two-Point Function and the Effective Magnetic Field in Diluted Ising Models on the Cayley Tree

    Full text link
    Some results on the two-point function and on the analytic structure of the momenta of the effective fugacity at the origin for a class of diluted ferromagnetic Ising models on the Cayley tree are presented.Comment: 22 page

    Nonlinear Hydrodynamics of Disentangled Flux-Line Liquids

    Full text link
    In this paper we use non-Gaussian hydrodynamics to study the magnetic response of a flux-line liquid in the mixed state of a type-II superconductor. Both the derivation of our model, which goes beyond conventional Gaussian flux liquid hydrodynamics, and its relationship to other approaches used in the literature are discussed. We focus on the response to a transverse tilting field which is controlled by the tilt modulus, c44, of the flux array. We show that interaction effects can enhance c44 even in infinitely thick clean materials. This enhancement can be interpreted as the appearance of a disentangled flux-liquid fraction. In contrast to earlier work, our theory incorporates the nonlocality of the intervortex interaction in the field direction. This nonlocality is crucial for obtaining a nonvanishing renormalization of the tilt modulus in the thermodynamic limit of thick samples.Comment: 20 pages, 3 figures (submitted to PRB

    Oriented Percolation in One-Dimensional 1/|x-y|^2 Percolation Models

    Full text link
    We consider independent edge percolation models on Z, with edge occupation probabilities p_ = p if |x-y| = 1, 1 - exp{- beta / |x-y|^2} otherwise. We prove that oriented percolation occurs when beta > 1 provided p is chosen sufficiently close to 1, answering a question posed in [Commun. Math. Phys. 104, 547 (1986)]. The proof is based on multi-scale analysis.Comment: 19 pages, 2 figures. See also Commentary on J. Stat. Phys. 150, 804-805 (2013), DOI 10.1007/s10955-013-0702-

    Asymptotic integral kernel for ensembles of random normal matrices with radial potentials

    Get PDF
    We use the steepest descents method to study the integral kernel of a family of normal random matrix ensembles with eigenvalue distribution P_{N}(z_{1},...,z_{N}) = Z_{N}^{-1} e^{-NSigma_{i=1}^{N}V_{alpha}(z_{i})} Pi_{1leqi<jleqN}|z_{i}-z_{j}|^{2} where V_{alpha}(z)=|z|^{alpha}, z in C and alpha in ]0,infty[. Asymptotic analysis with error estimates are obtained. A corollary of this expansion is a scaling limit for the n-point function in terms of the integral kernel for the classical Segal--Bargmann space

    Weak point disorder in strongly fluctuating flux-line liquids

    Get PDF
    We consider the effect of weak uncorrelated quenched disorder (point defects) on a strongly fluctuating flux-line liquid. We use a hydrodynamic model which is based on mapping the flux-line system onto a quantum liquid of relativistic charged bosons in 2+1 dimensions [P. Benetatos and M. C. Marchetti, Phys. Rev. B 64, 054518, (2001)]. In this model, flux lines are allowed to be arbitrarily curved and can even form closed loops. Point defects can be scalar or polar. In the latter case, the direction of their dipole moments can be random or correlated. Within the Gaussian approximation of our hydrodynamic model, we calculate disorder-induced corrections to the correlation functions of the flux-line fields and the elastic moduli of the flux-line liquid. We find that scalar disorder enhances loop nucleation, and polar (magnetic) defects decrease the tilt modulus.Comment: 15 pages, submitted to Pramana-Journal of Physics for the special volume on Vortex State Studie

    Vortex Line Fluctuations in Model High Temperature Superconductors

    Full text link
    We carry out Monte Carlo simulations of the uniformly frustrated 3d XY model as a model for vortex line fluctuations in a high Tc superconductor. A density of vortex lines of f=1/25 is considered. We find two sharp phase transitions. The low T phase is an ordered vortex line lattice. The high T normal phase is a vortex line liquid with much entangling, cutting, and loop excitations. An intermediate phase is found which is characterized as a vortex line liquid of disentangled lines. In this phase, the system displays superconducting properties in the direction parallel to the magnetic field, but normal behavior in planes perpendicular to the magnetic field.Comment: 38 pages, LaTeX 15 figures (upon request to [email protected]
    corecore