6,868 research outputs found
Using Evidence in the development of local health policies : Some Evidence from the United Kingdom
Objectives: This paper explores the use of evidence, focusing on economic evidence in particular, in the development of local health policies through an in-depth study of Health Improvement Programmes (HImPs) in England. Methods: A questionnaire was sent to the person responsible for coordinating the development of the HImP in each of the 102 English health authorities. In addition, semi-structured interviews were conducted with 10 HImP leaders, and a random sample of 26 HImP documents was reviewed using a standard pro forma. Results: Of the 102 mail questionnaires sent out, 68 (67%) were returned. It was found that those developing HImPs had multiple objectives, only some of which (e.g., efficiency in healthcare provision) would necessarily require evidence.Where evidence was used, this was a mixture of internal (experiential) and external (empirical) evidence, with the balance (66%) being in favor of the latter. Government reports and guidance from the National Institute for Clinical Excellence (NICE), were the main sources of external evidence, rather than published papers. Key barriers to the use of economic evidence were lack of time and availability and the difficulties in synthesizing information at the local level. Conclusions: Based on responses to our survey, the main ways of increasing the use of evidence in the development of local health policies in England are to produce more evidence-based national guidance and to produce accessible summaries of the available literature for local decision makers
Many-body quantum dynamics of polarisation squeezing in optical fibre
We report new experiments that test quantum dynamical predictions of
polarization squeezing for ultrashort photonic pulses in a birefringent fibre,
including all relevant dissipative effects. This exponentially complex
many-body problem is solved by means of a stochastic phase-space method. The
squeezing is calculated and compared to experimental data, resulting in
excellent quantitative agreement. From the simulations, we identify the
physical limits to quantum noise reduction in optical fibres. The research
represents a significant experimental test of first-principles time-domain
quantum dynamics in a one-dimensional interacting Bose gas coupled to
dissipative reservoirs.Comment: 4 pages, 4 figure
Reply to "Comment on 'Stimulated Raman adiabatic passage from an atomic to a molecular Bose-Einstein condensate'"
In the Comment by M. Mackie \textit{et al.} [arXiv: physics/0212111 v.4], the
authors suggest that the molecular conversion efficiency in atom-molecule
STIRAP can be improved by lowering the initial atomic density, which in turn
requires longer pulse durations to maintain adiabaticity. Apart from the fact
that the mean-field approximation becomes questionable at low densities, we
point out that a low-density strategy with longer pulses has several problems.
It generally requires higher pulse energies, and increases radiative losses. We
also show that even within the approximations used in the Comment, their
example leads to no efficiency improvement compared to our high-density case.
In a more careful analysis including radiative losses neglected in the Comment,
the proposed strategy gives almost no conversion owing to the longer pulse
durations required.Comment: Accepted for publication in Phys. Rev.
Mean-field study of itinerant ferromagnetism in trapped ultracold Fermi gases: Beyond the local density approximation
We theoretically investigate the itinerant ferromagnetic transition of a
spherically trapped ultracold Fermi gas with spin imbalance under strongly
repulsive interatomic interactions. Our study is based on a self-consistent
solution of the Hartree-Fock mean-field equations beyond the widely used local
density approximation. We demonstrate that, while the local density
approximation holds in the paramagnetic phase, after the ferromagnetic
transition it leads to a quantitative discrepancy in various thermodynamic
quantities even with large atom numbers. We determine the position of the phase
transition by monitoring the shape change of the free energy curve with
increasing the polarization at various interaction strengths.Comment: 7 pages, 5 figures; published version in Phys. Rev.
A variance-minimization scheme for optimizing Jastrow factors
We describe a new scheme for optimizing many-electron trial wave functions by
minimizing the unreweighted variance of the energy using stochastic integration
and correlated-sampling techniques. The scheme is restricted to parameters that
are linear in the exponent of a Jastrow correlation factor, which are the most
important parameters in the wave functions we use. The scheme is highly
efficient and allows us to investigate the parameter space more closely than
has been possible before. We search for multiple minima of the variance in the
parameter space and compare the wave functions obtained using reweighted and
unreweighted variance minimization.Comment: 19 pages; 12 figure
Gaussian phase-space representations for fermions
We introduce a positive phase-space representation for fermions, using the
most general possible multi-mode Gaussian operator basis. The representation
generalizes previous bosonic quantum phase-space methods to Fermi systems. We
derive equivalences between quantum and stochastic moments, as well as operator
correspondences that map quantum operator evolution onto stochastic processes
in phase space. The representation thus enables first-principles quantum
dynamical or equilibrium calculations in many-body Fermi systems. Potential
applications are to strongly interacting and correlated Fermi gases, including
coherent behaviour in open systems and nanostructures described by master
equations. Examples of an ideal gas and the Hubbard model are given, as well as
a generic open system, in order to illustrate these ideas.Comment: More references and examples. Much less mathematical materia
Quantum limits to center-of-mass measurements
We discuss the issue of measuring the mean position (center-of-mass) of a
group of bosonic or fermionic quantum particles, including particle number
fluctuations. We introduce a standard quantum limit for these measurements at
ultra-low temperatures, and discuss this limit in the context of both photons
and ultra-cold atoms. In the case of fermions, we present evidence that the
Pauli exclusion principle has a strongly beneficial effect, giving rise to a
1/N scaling in the position standard-deviation -- as opposed to a
scaling for bosons. The difference between the actual mean-position fluctuation
and this limit is evidence for quantum wave-packet spreading in the
center-of-mass. This macroscopic quantum effect cannot be readily observed for
non-interacting particles, due to classical pulse broadening. For this reason,
we also study the evolution of photonic and matter-wave solitons, where
classical dispersion is suppressed. In the photonic case, we show that the
intrinsic quantum diffusion of the mean position can contribute significantly
to uncertainties in soliton pulse arrival times. We also discuss ways in which
the relatively long lifetimes of attractive bosons in matter-wave solitons may
be used to demonstrate quantum interference between massive objects composed of
thousands of particles.Comment: 12 pages, 6 figures. Submitted to PRA. Revised to include more
references as well as a discussion of fermionic center-of-mas
Decoherence of Quantum-Enhanced Timing Accuracy
Quantum enhancement of optical pulse timing accuracy is investigated in the
Heisenberg picture. Effects of optical loss, group-velocity dispersion, and
Kerr nonlinearity on the position and momentum of an optical pulse are studied
via Heisenberg equations of motion. Using the developed formalism, the impact
of decoherence by optical loss on the use of adiabatic soliton control for
beating the timing standard quantum limit [Tsang, Phys. Rev. Lett. 97, 023902
(2006)] is analyzed theoretically and numerically. The analysis shows that an
appreciable enhancement can be achieved using current technology, despite an
increase in timing jitter mainly due to the Gordon-Haus effect. The decoherence
effect of optical loss on the transmission of quantum-enhanced timing
information is also studied, in order to identify situations in which the
enhancement is able to survive.Comment: 12 pages, 4 figures, submitte
Emergent classicality in continuous quantum measurements
We develop a classical theoretical description for nonlinear many-body
dynamics that incorporates the back-action of a continuous measurement process.
The classical approach is compared with the exact quantum solution in an
example with an atomic Bose-Einstein condensate in a double-well potential
where the atom numbers in both potential wells are monitored by light
scattering. In the classical description the back-action of the measurements
appears as diffusion of the relative phase of the condensates on each side of
the trap. When the measurements are frequent enough to resolve the system
dynamics, the system behaves classically. This happens even deep in the quantum
regime, and demonstrates how classical physics emerges from quantum mechanics
as a result of measurement back-action
- …