7,754 research outputs found
Effects of intra- and inter-laminar resin content on the mechanical properties of toughened composite materials
Composite materials having multiphase toughened matrix systems and laminate architectures characterized by resin-rich interlaminar layers (RIL) have been the subject of much recent attention. Such materials are likely to find applications in thick compressively loaded structures such as the keel area of commercial aircraft fuselages. The effects of resin content and its interlaminar and intralaminar distribution on mechanical properties were investigated with test and analysis of two carbon-epoxy systems. The RIL was found to reduce the in situ strengthening effect for matrix cracking in laminates. Mode 2 fracture toughness was found to increase with increasing RIL thickness over the range investigated, and Mode 1 interlaminar toughness was negligibly affected. Compressive failure strains were found to increase with increasing resin content for specimens having no damage, holes, and impact damage. Analytical tools for predicting matrix cracking of off-axis plies and damage tolerance in compression after impact (CAI) were successfully applied to materials with RIL
Gapless finite- theory of collective modes of a trapped gas
We present predictions for the frequencies of collective modes of trapped
Bose-condensed Rb atoms at finite temperature. Our treatment includes a
self-consistent treatment of the mean-field from finite- excitations and the
anomolous average. This is the first gapless calculation of this type for a
trapped Bose-Einstein condensed gas. The corrections quantitatively account for
the downward shift in the excitation frequencies observed in recent
experiments as the critical temperature is approached.Comment: 4 pages Latex and 2 postscript figure
Discrete surface solitons in two dimensions
We investigate fundamental localized modes in 2D lattices with an edge
(surface). Interaction with the edge expands the stability area for ordinary
solitons, and induces a difference between perpendicular and parallel dipoles;
on the contrary, lattice vortices cannot exist too close to the border.
Furthermore, we show analytically and numerically that the edge stabilizes a
novel wave species, which is entirely unstable in the uniform lattice, namely,
a "horseshoe" soliton, consisting of 3 sites. Unstable horseshoes transform
themselves into a pair of ordinary solitons.Comment: 6 pages, 4 composite figure
Vortices in attractive Bose-Einstein condensates in two dimensions
The form and stability of quantum vortices in Bose-Einstein condensates with
attractive atomic interactions is elucidated. They appear as ring bright
solitons, and are a generalization of the Townes soliton to nonzero winding
number . An infinite sequence of radially excited stationary states appear
for each value of , which are characterized by concentric matter-wave rings
separated by nodes, in contrast to repulsive condensates, where no such set of
states exists. It is shown that robustly stable as well as unstable regimes may
be achieved in confined geometries, thereby suggesting that vortices and their
radial excited states can be observed in experiments on attractive condensates
in two dimensions.Comment: 4 pages, 3 figure
Single molecule analysis of DNA wrapping and looping by a circular 14mer wheel of the bacteriophage 186 CI repressor
The lytic–lysogenic decision in bacteriophage 186 is governed by the 186 CI repressor protein in a unique way. The 186 CI is proposed to form a wheel-like oligomer that can mediate either wrapped or looped nucleoprotein complexes to provide the cooperative and competitive interactions needed for regulation. Although consistent with structural, biochemical and gene expression data, many aspects of this model are based on inference. Here, we use atomic force microscopy (AFM) to reveal the various predicted wrapped and looped species, and new ones, for CI regulation of lytic and lysogenic transcription. Automated AFM analysis showed CI particles of the predicted dimensions on the DNA, with CI multimerization favoured by DNA binding. Measurement of the length of the wrapped DNA segments indicated that CI may move on the DNA, wrapping or releasing DNA on either side of the wheel. Tethered particle motion experiments were consistent with wrapping and looping of DNA by CI in solution, where in contrast to λ repressor, the looped species were exceptionally stable. The CI regulatory system provides an intriguing comparison with that of nucleosomes, which share the ability to wrap and release similar sized segments of DNA.Haowei Wang, Ian B. Dodd, David D. Dunlap, Keith E. Shearwin, and Laura Finz
An analytical study of resonant transport of Bose-Einstein condensates
We study the stationary nonlinear Schr\"odinger equation, or Gross-Pitaevskii
equation, for a one--dimensional finite square well potential. By neglecting
the mean--field interaction outside the potential well it is possible to
discuss the transport properties of the system analytically in terms of ingoing
and outgoing waves. Resonances and bound states are obtained analytically. The
transmitted flux shows a bistable behaviour. Novel crossing scenarios of
eigenstates similar to beak--to--beak structures are observed for a repulsive
mean-field interaction. It is proven that resonances transform to bound states
due to an attractive nonlinearity and vice versa for a repulsive nonlinearity,
and the critical nonlinearity for the transformation is calculated
analytically. The bound state wavefunctions of the system satisfy an
oscillation theorem as in the case of linear quantum mechanics. Furthermore,
the implications of the eigenstates on the dymamics of the system are
discussed.Comment: RevTeX4, 16 pages, 19 figure
- …