12,318 research outputs found
The effect of temperature evolution on the interior structure of HO-rich planets
For most planets in the range of radii from 1 to 4 R, water is a
major component of the interior composition. At high pressure HO can be
solid, but for larger planets, like Neptune, the temperature can be too high
for this. Mass and age play a role in determining the transition between solid
and fluid (and mixed) water-rich super-Earth. We use the latest high-pressure
and ultra-high-pressure phase diagrams of HO, and by comparing them
with the interior adiabats of various planet models, the temperature evolution
of the planet interior is shown, especially for the state of HO. It
turns out that the bulk of HO in a planet's interior may exist in
various states such as plasma, superionic, ionic, Ice VII, Ice X, etc.,
depending on the size, age and cooling rate of the planet. Different regions of
the mass-radius phase space are also identified to correspond to different
planet structures. In general, super-Earth-size planets (isolated or without
significant parent star irradiation effects) older than about 3 Gyr would be
mostly solid.Comment: Accepted by ApJ, in print for March 2014 (14 pages, 3 colored
figures, 1 table
On the performance of two protocols: SARG04 and BB84
We compare the performance of BB84 and SARG04, the later of which was
proposed by V. Scarani et al., in Phys. Rev. Lett. 92, 057901 (2004).
Specifically, in this paper, we investigate SARG04 with two-way classical
communications and SARG04 with decoy states. In the first part of the paper, we
show that SARG04 with two-way communications can tolerate a higher bit error
rate (19.4% for a one-photon source and 6.56% for a two-photon source) than
SARG04 with one-way communications (10.95% for a one-photon source and 2.71%
for a two-photon source). Also, the upper bounds on the bit error rate for
SARG04 with two-way communications are computed in a closed form by considering
an individual attack based on a general measurement. In the second part of the
paper, we propose employing the idea of decoy states in SARG04 to obtain
unconditional security even when realistic devices are used. We compare the
performance of SARG04 with decoy states and BB84 with decoy states. We find
that the optimal mean-photon number for SARG04 is higher than that of BB84 when
the bit error rate is small. Also, we observe that SARG04 does not achieve a
longer secure distance and a higher key generation rate than BB84, assuming a
typical experimental parameter set.Comment: 48 pages, 10 figures, 1 column, changed Figs. 7 and
Recommended from our members
Understanding Constraint-Based Processes: A Precursor to Conceptual Change in Physics
Chi (1992; Chi and Slotu, 1993; Slotta, Chi and Joram, 1995) suggests that students experience difficulty in learning certain physics concepts because they inappropriately attribute these concepts with the ontology of material substances(MS). According to accepted physics theory, these concepts (e.g., light, heat, electric current) are actually a special type of process that Chi (1992) calls "Constraint-Based Interactions" (CBI). Students cannot understand the process-like nature of these concepts because of their bias towards substance-like conceptions, and also because they are unfamiliar with the CBI ontology. Thus, conceptual change can be facilitated by providing students with some knowledge of the CBI ontology before they receive the relevant physics instruction. This CBI training was provided by means of a computer-based instructional module in which students manipulated simulations as they read an accompanying text concerning four attributes of the CBI ontology. A control group simply read a (topically similar) text from the computer screen. The two groups then studied a physics textbook concerning concepts of electricity, and performed a post-test which was assessed for evidence of conceptual change. As a result of their training in the CBI ontology, the experimental group showed significant evidence of conceptual change with regards to the CBI concept of electric current
Higher rank numerical ranges of normal matrices
The higher rank numerical range is closely connected to the construction of
quantum error correction code for a noisy quantum channel. It is known that if
a normal matrix has eigenvalues , then its higher
rank numerical range is the intersection of convex polygons with
vertices , where . In this paper, it is shown that the higher rank numerical range of a
normal matrix with distinct eigenvalues can be written as the intersection
of no more than closed half planes. In addition, given a convex
polygon a construction is given for a normal matrix
with minimum such that . In particular, if
has vertices, with , there is a normal matrix with such that .Comment: 12 pages, 9 figures, to appear in SIAM Journal on Matrix Analysis and
Application
Field-dependent diamagnetic transition in magnetic superconductor
The magnetic penetration depth of single crystal
was measured down to 0.4 K in dc fields up
to 7 kOe. For insulating , Sm spins order at the
N\'{e}el temperature, K, independent of the applied field.
Superconducting ( K) shows a
sharp increase in diamagnetic screening below which varied from
4.0 K () to 0.5 K ( 7 kOe) for a field along the c-axis. If the
field was aligned parallel to the conducting planes, remained
unchanged. The unusual field dependence of indicates a spin freezing
transition that dramatically increases the superfluid density.Comment: 4 pages, RevTex
Security proof of a three-state quantum key distribution protocol without rotational symmetry
Standard security proofs of quantum key distribution (QKD) protocols often
rely on symmetry arguments. In this paper, we prove the security of a
three-state protocol that does not possess rotational symmetry. The three-state
QKD protocol we consider involves three qubit states, where the first two
states, |0_z> and |1_z>, can contribute to key generation and the third state,
|+>=(|0_z>+|1_z>)/\sqrt{2}, is for channel estimation. This protocol has been
proposed and implemented experimentally in some frequency-based QKD systems
where the three states can be prepared easily. Thus, by founding on the
security of this three-state protocol, we prove that these QKD schemes are, in
fact, unconditionally secure against any attacks allowed by quantum mechanics.
The main task in our proof is to upper bound the phase error rate of the qubits
given the bit error rates observed. Unconditional security can then be proved
not only for the ideal case of a single-photon source and perfect detectors,
but also for the realistic case of a phase-randomized weak coherent light
source and imperfect threshold detectors. Our result on the phase error rate
upper bound is independent of the loss in the channel. Also, we compare the
three-state protocol with the BB84 protocol. For the single-photon source case,
our result proves that the BB84 protocol strictly tolerates a higher quantum
bit error rate than the three-state protocol; while for the coherent-source
case, the BB84 protocol achieves a higher key generation rate and secure
distance than the three-state protocol when a decoy-state method is used.Comment: 10 pages, 3 figures, 2 column
- …