3,569 research outputs found

    Braided modules and reflection equations

    Full text link
    We introduce a representation theory of q-Lie algebras defined earlier in \cite{DG1}, \cite{DG2}, formulated in terms of braided modules. We also discuss other ways to define Lie algebra-like objects related to quantum groups, in particular, those based on the so-called reflection equations. We also investigate the truncated tensor product of braided modules.Comment: 18 pp., Late

    Double quantization of \cp type orbits by generalized Verma modules

    Full text link
    It is known that symmetric orbits in g{\bf g}^* for any simple Lie algebra g{\bf g} are equiped with a Poisson pencil generated by the Kirillov-Kostant-Souriau bracket and the reduced Sklyanin bracket associated to the "canonical" R-matrix. We realize quantization of this Poisson pencil on \cp type orbits (i.e. orbits in sl(n+1)sl(n+1)^* whose real compact form is CPn CP^n) by means of q-deformed Verma modules.Comment: 21 pages, LaTeX, no figure

    Quantum orbits of R-matrix type

    Get PDF
    Given a simple Lie algebra \gggg, we consider the orbits in \gggg^* which are of R-matrix type, i.e., which possess a Poisson pencil generated by the Kirillov-Kostant-Souriau bracket and the so-called R-matrix bracket. We call an algebra quantizing the latter bracket a quantum orbit of R-matrix type. We describe some orbits of this type explicitly and we construct a quantization of the whole Poisson pencil on these orbits in a similar way. The notions of q-deformed Lie brackets, braided coadjoint vector fields and tangent vector fields are discussed as well.Comment: 18 pp., Late

    Braided algebras and their applications to Noncommutative Geometry

    Full text link
    We introduce the notion of a braided algebra and study some examples of these. In particular, R-symmetric and R-skew-symmetric algebras of a linear space V equipped with a skew-invertible Hecke symmetry R are braided algebras. We prove the "mountain property" for the numerators and denominators of their Poincare-Hilbert series (which are always rational functions). Also, we further develop a differential calculus on modified Reflection Equation algebras. Thus, we exhibit a new form of the Leibniz rule for partial derivatives on such algebras related to involutive symmetries R. In particular, we present this rule for the algebra U(gl(m)). The case of the algebra U(gl(2)) and its compact form U(u(2)) (which can be treated as a deformation of the Minkowski space algebra) is considered in detail. On the algebra U(u(2)) we introduce the notion of the quantum radius, which is a deformation of the usual radius, and compute the action of rotationally invariant operators and in particular of the Laplace operator. This enables us to define analogs of the Laplace-Beltrami operators corresponding to certain Schwarzschild-type metrics and to compute their actions on the algebra U(u(2)) and its central extension. Some "physical" consequences of our considerations are presented.Comment: LaTeX file, 24 page

    Quantum and Braided Linear Algebra

    Full text link
    Quantum matrices A(R)A(R) are known for every RR matrix obeying the Quantum Yang-Baxter Equations. It is also known that these act on `vectors' given by the corresponding Zamalodchikov algebra. We develop this interpretation in detail, distinguishing between two forms of this algebra, V(R)V(R) (vectors) and V(R)V^*(R) (covectors). A(R)\to V(R_{21})\tens V^*(R) is an algebra homomorphism (i.e. quantum matrices are realized by the tensor product of a quantum vector with a quantum covector), while the inner product of a quantum covector with a quantum vector transforms as a scaler. We show that if V(R)V(R) and V(R)V^*(R) are endowed with the necessary braid statistics Ψ\Psi then their braided tensor-product V(R)\und\tens V^*(R) is a realization of the braided matrices B(R)B(R) introduced previously, while their inner product leads to an invariant quantum trace. Introducing braid statistics in this way leads to a fully covariant quantum (braided) linear algebra. The braided groups obtained from B(R)B(R) act on themselves by conjugation in a way impossible for the quantum groups obtained from A(R)A(R).Comment: 27 page
    corecore