182 research outputs found

    NEUROWAR IS HERE!

    Get PDF
    Mysterious attacks on the human brain have begun plaguing U.S. diplomats and officials with increasing frequency, ranging from overseas diplomatic outposts to right here in the United States. Known in the media as Havana Syndrome, these attacks appear to be signaling a new form of warfare—one that is focused on enhancing, targeting, and weaponizing the human brain—neurowarfare. Indeed, the human brain is at the center of a biotechnological revolution currently underway. At the same time, great power competition has returned to the forefront of international relations, as China and Russia seek to contest America’s global leadership. In an increasingly globalized and interconnected world, this contest is ultimately a battle of ideas and influence, with more value placed on information and non-lethal means to manipulate and control both adversaries and domestic populations alike. The battle for influence begins and ends in the human mind, where reality is perceived. The implications of these developments point to both a new form and domain of warfare centering on the human brain. By highlighting recent attacks targeting the brain and revealing research from the United States and its two main competitors—China and Russia—this thesis seeks to argue that neurowar is not just coming, but rather is already here and is likely to fundamentally alter conflict and warfare.Lieutenant Colonel, United States Air ForceMajor, United States Air ForceApproved for public release. Distribution is unlimited

    Bounded Search Tree Algorithms for Parameterized Cograph Deletion: Efficient Branching Rules by Exploiting Structures of Special Graph Classes

    Full text link
    Many fixed-parameter tractable algorithms using a bounded search tree have been repeatedly improved, often by describing a larger number of branching rules involving an increasingly complex case analysis. We introduce a novel and general search strategy that branches on the forbidden subgraphs of a graph class relaxation. By using the class of P4P_4-sparse graphs as the relaxed graph class, we obtain efficient bounded search tree algorithms for several parameterized deletion problems. We give the first non-trivial bounded search tree algorithms for the cograph edge-deletion problem and the trivially perfect edge-deletion problems. For the cograph vertex deletion problem, a refined analysis of the runtime of our simple bounded search algorithm gives a faster exponential factor than those algorithms designed with the help of complicated case distinctions and non-trivial running time analysis [21] and computer-aided branching rules [11].Comment: 23 pages. Accepted in Discrete Mathematics, Algorithms and Applications (DMAA

    Neues aus dem Versuchswesen im ökologischen Obst- und Weinbau

    Get PDF
    Der Sachbereich Ökologischer Anbau des Versuchszentrums Laimburg und die Unità Sperimentazione Agraria e Agricoltura Sostenibile des Agrarinstituts in San Michele all’Adige, Fondazione Edmund Mach, organisierten im August 2012 eine öffentliche Versuchsvorstellung. Dadurch boten wir einmal mehr die Möglichkeit, einem breiten Publikum Einblicke in die aktuellsten Versuchsaktivitäten und -ergebnisse zu geben

    Tunable few electron quantum dots in InAs nanowires

    Full text link
    Quantum dots realized in InAs are versatile systems to study the effect of spin-orbit interaction on the spin coherence, as well as the possibility to manipulate single spins using an electric field. We present transport measurements on quantum dots realized in InAs nanowires. Lithographically defined top-gates are used to locally deplete the nanowire and to form tunneling barriers. By using three gates, we can form either single quantum dots, or two quantum dots in series along the nanowire. Measurements of the stability diagrams for both cases show that this method is suitable for producing high quality quantum dots in InAs.Comment: 8 pages, 4 figure

    Closest string with outliers

    Get PDF
    Background: Given n strings s1, …, sn each of length ℓ and a nonnegative integer d, the CLOSEST STRING problem asks to find a center string s such that none of the input strings has Hamming distance greater than d from s. Finding a common pattern in many – but not necessarily all – input strings is an important task that plays a role in many applications in bioinformatics. Results: Although the closest string model is robust to the oversampling of strings in the input, it is severely affected by the existence of outliers. We propose a refined model, the CLOSEST STRING WITH OUTLIERS (CSWO) problem, to overcome this limitation. This new model asks for a center string s that is within Hamming distance d to at least n – k of the n input strings, where k is a parameter describing the maximum number of outliers. A CSWO solution not only provides the center string as a representative for the set of strings but also reveals the outliers of the set. We provide fixed parameter algorithms for CSWO when d and k are parameters, for both bounded and unbounded alphabets. We also show that when the alphabet is unbounded the problem is W[1]-hard with respect to n – k, ℓ, and d. Conclusions: Our refined model abstractly models finding common patterns in several but not all input strings

    More Than Forty Prominent Economists Urge Supreme Court to Allow EPA to Consider Costs and Consequences of Clean Air Regulations

    Get PDF
    More than forty prominent economists filed a Friend of the Court brief with the Supreme Court, asking the justices to overturn a lower court ruling that the Environmental Protection Agency (EPA) may not take into account the costs of regulations when setting standards under the Clean Air Act. Calling the lower court ruling "economically unsound," the economists argued that the EPA "should be allowed to consider explicitly the full consequences" of regulatory decisions, including costs, benefits, and any other relevant facts. In their Amici Curiae brief, the economists contended that the "plain aim" of the Clean Air Act "is protecting the public health&quo.t; That aim, they said, "is unlikely to be achieved without, at least, an implicit balancing of benefits and costs." The Supreme Court filing was organized by the American Enterprise Institute-Brookings Joint Center for Regulatory Studies. The bipartisan group of economists signing the brief included three Nobel laureates, seven former chairmen of the President's Council of Economic Advisers, and two former directors of the White House Office of Management and Budget. The case, American Trucking Association v. Carol M. Browner, Administrator of the Environmental Protection Agency , was appealed to the Supreme Court after a Federal Court in Washington D.C. ruled that the EPA was not permitted to consider costs in setting regulatory standards for enforcing the Clean Air Act. "We believe it would be imprudent for the EPA to ignore costs totally, particularly given their magnitude in this case," the economists stated in the brief. "The EPA estimates that those [clean air] standards could cost on the order of $50 billion annually." The brief argued, "Not considering costs makes it difficult to set a defensible standard, especially when there is no threshold below which health risks disappear." Ignoring costs, the economists said, "could lead to a decision to set the standard at zero pollution," which would threaten "the very economic prosperity on which public health primarily depends." The economists declared: "The importance of this issue cannot be overstated. Both direct benefits and costs of environmental, health, and safety regulations are substantial, estimated to be several hundred billion dollars annually." If the Supreme Court overturns the lower court ruling and allows the EPA to consider costs in establishing clear air regulations, the brief argued, it would be "a historic moment in the making of regulatory policy."Environment, Other Topics

    Reconstructing phylogenies from noisy quartets in polynomial time with a high success probability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, quartet-based phylogeny reconstruction methods have received considerable attentions in the computational biology community. Traditionally, the accuracy of a phylogeny reconstruction method is measured by simulations on synthetic datasets with known "true" phylogenies, while little theoretical analysis has been done. In this paper, we present a new model-based approach to measuring the accuracy of a quartet-based phylogeny reconstruction method. Under this model, we propose three efficient algorithms to reconstruct the "true" phylogeny with a high success probability.</p> <p>Results</p> <p>The first algorithm can reconstruct the "true" phylogeny from the input quartet topology set without quartet errors in <it>O</it>(<it>n</it><sup>2</sup>) time by querying at most (<it>n </it>- 4) log(<it>n </it>- 1) quartet topologies, where <it>n </it>is the number of the taxa. When the input quartet topology set contains errors, the second algorithm can reconstruct the "true" phylogeny with a probability approximately 1 - <it>p </it>in <it>O</it>(<it>n</it><sup>4 </sup>log <it>n</it>) time, where <it>p </it>is the probability for a quartet topology being an error. This probability is improved by the third algorithm to approximately <inline-formula><m:math name="1748-7188-3-1-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:mfrac><m:mn>1</m:mn><m:mrow><m:mn>1</m:mn><m:mo>+</m:mo><m:msup><m:mi>q</m:mi><m:mn>2</m:mn></m:msup><m:mo>+</m:mo><m:mfrac><m:mn>1</m:mn><m:mn>2</m:mn></m:mfrac><m:msup><m:mi>q</m:mi><m:mn>4</m:mn></m:msup><m:mo>+</m:mo><m:mfrac><m:mn>1</m:mn><m:mrow><m:mn>16</m:mn></m:mrow></m:mfrac><m:msup><m:mi>q</m:mi><m:mn>5</m:mn></m:msup></m:mrow></m:mfrac></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGacaGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqaIXaqmaeaacqaIXaqmcqGHRaWkcqWGXbqCdaahaaqabeaacqaIYaGmaaGaey4kaSYaaSaaaeaacqaIXaqmaeaacqaIYaGmaaGaemyCae3aaWbaaeqabaGaeGinaqdaaiabgUcaRmaalaaabaGaeGymaedabaGaeGymaeJaeGOnaydaaiabdghaXnaaCaaabeqaaiabiwda1aaaaaaaaa@3D5A@</m:annotation></m:semantics></m:math></inline-formula>, where <inline-formula><m:math name="1748-7188-3-1-i2" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:mi>q</m:mi><m:mo>=</m:mo><m:mfrac><m:mi>p</m:mi><m:mrow><m:mn>1</m:mn><m:mo>−</m:mo><m:mi>p</m:mi></m:mrow></m:mfrac></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGacaGaaiaabeqaaeqabiWaaaGcbaGaemyCaeNaeyypa0tcfa4aaSaaaeaacqWGWbaCaeaacqaIXaqmcqGHsislcqWGWbaCaaaaaa@3391@</m:annotation></m:semantics></m:math></inline-formula>, with running time of <it>O</it>(<it>n</it><sup>5</sup>), which is at least 0.984 when <it>p </it>< 0.05.</p> <p>Conclusion</p> <p>The three proposed algorithms are mathematically guaranteed to reconstruct the "true" phylogeny with a high success probability. The experimental results showed that the third algorithm produced phylogenies with a higher probability than its aforementioned theoretical lower bound and outperformed some existing phylogeny reconstruction methods in both speed and accuracy.</p
    corecore