1,452 research outputs found

    Varying c cosmology and Planck value constraints

    Full text link
    It has been suggested that by increasing the speed of light during the early universe various cosmological problems of standard big bang cosmology can be overcome, without requiring an inflationary phase. However, we find that as the Planck length and Planck time are then made correspondingly smaller, and together with the need that the universe should not re-enter a Planck epoch, the higher cc models have very limited ability to resolve such problems. For a constantly decreasing cc the universe will quickly becomes quantum gravitationally dominated as time increases: the opposite to standard cosmology where quantum behaviour is only ascribed to early times.Comment: extended versio

    Self-Gravitating Strings In 2+1 Dimensions

    Full text link
    We present a family of classical spacetimes in 2+1 dimensions. Such a spacetime is produced by a Nambu-Goto self-gravitating string. Due to the special properties of three-dimensional gravity, the metric is completely described as a Minkowski space with two identified worldsheets. In the flat limit, the standard string is recovered. The formalism is developed for an open string with massive endpoints, but applies to other boundary conditions as well. We consider another limit, where the string tension vanishes in geometrical units but the end-masses produce finite deficit angles. In this limit, our open string reduces to the free-masses solution of Gott, which possesses closed timelike curves when the relative motion of the two masses is sufficiently rapid. We discuss the possible causal structures of our spacetimes in other regimes. It is shown that the induced worldsheet Liouville mode obeys ({\it classically}) a differential equation, similar to the Liouville equation and reducing to it in the flat limit. A quadratic action formulation of this system is presented. The possibility and significance of quantizing the self-gravitating string, is discussed.Comment: 55 page

    Topology from the Simulated Sloan Digital Sky Survey

    Get PDF
    We measure the topology (genus curve) of the galaxy distribution in a mock redshift catalog designed to resemble the upcoming Sloan Digital Sky Survey (SDSS). The catalog, drawn from a large N-body simulation of a Lambda-CDM cos- mological model, mimics the anticipated spectroscopic selection procedures of the SDSS in some detail. Sky maps, redshift slices, and 3-D contour maps of the mock survey reveal a rich and complex structure, including networks of voids and superclusters that resemble the patterns seen in the CfA redshift survey and the Las Campanas Redshift Survey (LCRS). The 3-D genus curve can be measured from the simulated catalog with superb precision; this curve has the general shape predicted for Gaussian, random phase initial conditions, but the error bars are small enough to demonstrate with high significance the subtle departures from this shape caused by non-linear gravitational evolution. These distortions have the form predicted by Matsubara's (1994) perturbative anal- ysis, but they are much smaller in amplitude. We also measure the 3-D genus curve of the radial peculiar velocity field measured by applying distance- indicator relations (with realistic errors) to the mock catalog. This genus curve is consistent with the Gaussian random phase prediction, though it is of relatively low precision because of the large smoothing length required to overcome noise in the measured velocity field. Finally, we measure the 2-D topology in redshift slices, similar to early slices from the SDSS and to slices already observed in the LCRS. The genus curves of these slices are consistent with the observed genus curves of the LCRS, providing further evidence in favor of the inflationary CDM model with Omega_M~0.4. The catalog is publicly available at http://www.astronomy.ohio-state.edu/~dhw/sdss.html.Comment: ASTeX 4.0 Preprint Style, 5 GIF figures (Figs 1, 2, 3a, 3b, 6; see http://cfa-www.harvard.edu/~wcolley/SDSS_Top/ for PostScript versions), 7 PostScript figures. Figure 5 and Table 1 have minor corrections since publicatio

    Closed time like curve and the energy condition in 2+1 dimensional gravity

    Full text link
    We consider gravity in 2+1 dimensions in presence of extended stationary sources with rotational symmetry. We prove by direct use of Einstein's equations that if i) the energy momentum tensor satisfies the weak energy condition, ii) the universe is open (conical at space infinity), iii) there are no CTC at space infinity, then there are no CTC at all.Comment: 10 pages (REVTEX 3.0), IFUP-60/9

    A prescription for probabilities in eternal inflation

    Get PDF
    Some of the parameters we call ``constants of Nature'' may in fact be variables related to the local values of some dynamical fields. During inflation, these variables are randomized by quantum fluctuations. In cases when the variable in question (call it χ\chi) takes values in a continuous range, all thermalized regions in the universe are statistically equivalent, and a gauge invariant procedure for calculating the probability distribution for χ\chi is known. This is the so-called ``spherical cutoff method''. In order to find the probability distribution for χ\chi it suffices to consider a large spherical patch in a single thermalized region. Here, we generalize this method to the case when the range of χ\chi is discontinuous and there are several different types of thermalized region. We first formulate a set of requirements that any such generalization should satisfy, and then introduce a prescription that meets all the requirements. We finally apply this prescription to calculate the relative probability for different bubble universes in the open inflation scenario.Comment: 15 pages, 5 figure

    A Toy Model for Open Inflation

    Full text link
    The open inflation scenario based on the theory of bubble formation in the models of a single scalar field suffered from a fatal defect. In all the versions of this scenario known so far, the Coleman-De Luccia instantons describing the creation of an open universe did not exist. We propose a simple one-field model where the CDL instanton does exist and the open inflation scenario can be realized.Comment: 7 pages, 4 figures, revtex, a discussion of density perturbations is extende

    Coreless vortex formation in a spinor Bose-Einstein condensate

    Full text link
    Coreless vortices were phase-imprinted in a spinor Bose-Einstein condensate. The three-component order parameter of F=1 sodium condensates held in a Ioffe-Pritchard magnetic trap was manipulated by adiabatically reducing the magnetic bias field along the trap axis to zero. This distributed the condensate population across its three spin states and created a spin texture. Each spin state acquired a different phase winding which caused the spin components to separate radially.Comment: 5 pages, 2 figure

    Experiment K-6-03. Gravity and skeletal growth, part 1. Part 2: Morphology and histochemistry of bone cells and vasculature of the tibia; Part 3: Nuclear volume analysis of osteoblast histogenesis in periodontal ligament cells; Part 4: Intervertebral disc swelling pressure associated with microgravity

    Get PDF
    Bone area, bone electrophysiology, bone vascularity, osteoblast morphology, and osteoblast histogenesis were studied in rats associated with Cosmos 1887. The results suggest that the synchronous animals were the only group with a significantly larger bone area than the basal group, that the bone electrical potential was more negative in flight than in the synchronous rats, that the endosteal osteoblasts from flight rats had greater numbers of transitional Golgi vesicles but no difference in the large Golgi saccules or the alkaline phosphatase activity, that the perioteal vasculature in the shaft of flight rats often showed very dense intraluminal deposits with adjacent degenerating osteocytes as well as lipid accumulations within the lumen of the vessels and sometimes degeneration of the vascular wall (this change was not present in the metaphyseal region of flight animals), and that the progenitor cells decreased in flight rats while the preosteoblasts increased compared to controls. Many of the results suggest that the animals were beginning to recover from the effects of spaceflight during the two day interval between landing and euthanasia; flight effects, such as the vascular changes, did not appear to recover

    Self-Dual Chern-Simons Solitons in (2+1)-Dimensional Einstein Gravity

    Full text link
    We consider here a generalization of the Abelian Higgs model in curved space, by adding a Chern--Simons term. The static equations are self-dual provided we choose a suitable potential. The solutions give a self-dual Maxwell--Chern--Simons soliton that possesses a mass and a spin
    • …
    corecore