521 research outputs found
Recommended from our members
Laboratory scale glass melter for testing defense waste glass
A one-liter joule heated glass melter was built to test the applicability of continuous melting to simulated high-level calcined defense waste. Inconel 690 electrodes and K-3 refractory brick were chosen for their corrosion resistance to fluoride glass. The melter maintained a full melt at 1100/sup 0/C using 3 kW. After approximately 2 months of operation, the melter was dismantled for metallurgical examination. The Inconel 690 electrodes were heavily corroded. A second melter is now in operation to verify the findings of the first melter run
Recommended from our members
A Method to Evaluate Additional Waste Forms to Optimize Performance of the HLW Repository
The DOE high-level waste (HLW) disposal system is based on decisions made in the 1970s. The de facto Yucca Mountain WAC for HLW, contained in the Waste Acceptance System Requirements Document (WASRD), and the DOE-EM Waste Acceptance Product Specification for Vitrified High Level Waste Forms (WAPS) tentatively describes waste forms to be interred in the repository, and limits them to borosilicate glass (BSG). It is known that many developed waste forms are as durable as or better than environmental assessment or “EA”-glass. Among them are the salt-ceramic and metallic waste forms developed at ANL-W. Also, iron phosphate glasses developed at University of Missouri show promise in stabilizing the most refractory materials in Hanford HLW. However, for any of this science to contribute, the current Total System Performance Assessment model must be able to evaluate the additional waste form to determine potential impacts on repository performance. The results can then support the technical bases required in the repository license application. A methodology is proposed to use existing analysis models to evaluate potential additional waste forms for disposal without gathering costly material specific degradation data. The concept is to analyze the potential impacts of waste form chemical makeup on repository performance assuming instantaneous waste matrix dissolution. This assumption obviates the need for material specific degradation models and is based on the relatively modest fractional contribution DOE HLW makes to the repository radionuclide and hazardous metals inventory. The existing analysis models, with appropriate data modifications, are used to evaluate geochemical interactions and material transport through the repository. This methodology would support early screening of proposed waste forms through simplified evaluation of disposal performance, and would provide preliminary guidance for repository license amendment in the future
Primary alpha-tertiary amine synthesis via alpha-C-H functionalization
A quinone-mediated general synthetic platform for the construction of primary a-tertiary amines from
abundant primary a-branched amine starting materials is described. This procedure pivots on the
efficient in situ generation of reactive ketimine intermediates and subsequent reaction with carboncentered nucleophiles such as organomagnesium and organolithium reagents, and TMSCN, creating
quaternary centers. Furthermore, extension to reverse polarity photoredox catalysis enables reactivity
with electrophiles, via a nucleophilic a-amino radical intermediate. This efficient, broadly applicable and
scalable amine-to-amine synthetic platform was successfully applied to library and API synthesis and in
the functionalization of drug molecules
Recommended from our members
Surrogate waste streams for use in MWFA funded research and development
Researchers developing technologies for treatment of mixed (both hazardous and radioactive) wastes are strongly encouraged to test using materials representative of the wastes targeted by their processes. Using actual wastes is essential for treatability studies and demonstrations prior to implementation, but is excessively costly and impractical during development. Thus, it is a responsibility of the focus area to provide researchers with surrogate recipes for use in development. Data from tests with standardized recipes will also facilitate comparison of results for competing technologies by potential end users and industry. Due to the wide range of waste materials in the DOE inventory and the scope of technology covered by the focus area, no one surrogate will accurately represent all wastes in all applications. The surrogates described are based on generic base compositions representative of that class of wastes, with variable constituents to be added over a recommended test range. Not all of the additives must be tested for each technology; focus should be directed to the constituents and physical forms present in the waste streams targeted by the developer. Excluding some parameters, or reducing the parametric testing rather than using the full range of concentration recommended simply limits the scope of potential application when the data is considered by a potential user. Surrogates are described for debris, sludges, and caustic scrub solution. Soils are recognized as a fourth class, and are considered too complex to represent with a surrogate. Descriptive text is also included to explain how the recipes were developed, and why each test additive is prescribed
Recent progress in the discovery of macrocyclic compounds as potential anti-infective therapeutics
Novel therapeutic strategies are urgently needed for the treatment of serious diseases caused by viral, bacterial and parasitic infections, because currently used drugs are facing the problem of rapidly emerging resistance. There is also an urgent need for agents that act on novel pathogen-specific targets, in order to expand the repertoire of possible therapies. The high throughput screening of diverse small molecule compound libraries has provided only a limited number of new lead series, and the number of compounds acting on novel targets is even smaller. Natural product screening has traditionally been very successful in the anti-infective area. Several successful drugs on the market as well as other compounds in clinical development are derived from natural products. Amongst these, many are macrocyclic compounds in the 1-2 kDa size range. This review will describe recent advances and novel drug discovery approaches in the anti-infective area, focusing on synthetic and natural macrocyclic compounds for which in vivo proof of concept has been established. The review will also highlight the Protein Epitope Mimetics (PEM) technology as a novel tool in the drug discovery process. Here the structures of naturally occurring antimicrobial and antiviral peptides and proteins are used as starting points to generate novel macrocyclic mimetics, which can be produced and optimized efficiently by combinatorial synthetic methods. Several recent examples highlight the great potential of the PEM approach in the discovery of new anti-infective agents
Exploring the longitudinal relationships between the use of grammar in text messaging and performance on grammatical tasks
Research has demonstrated that use of texting slang (textisms) when text messaging does not appear to impact negatively on children's literacy outcomes and may even benefit children's spelling attainment. However, less attention has been paid to the impact of text messaging on the development of children's and young people's understanding of grammar. This study therefore examined the interrelationships between children's and young adults' tendency to make grammatical violations when texting and their performance on formal assessments of spoken and written grammatical understanding, orthographic processing and spelling ability over the course of 1 year. Zero-order correlations showed patterns consistent with previous research on textism use and spelling, and there was no evidence of any negative associations between the development of the children's performance on the grammar tasks and their use of grammatical violations when texting. Adults' tendency to use ungrammatical word forms ('does you') was positively related to performance on the test of written grammar. Grammatical violations were found to be positively associated with growth in spelling for secondary school children. However, not all forms of violation were observed to be consistently used in samples of text messages taken 12 months apart or were characteristic of typical text messages. The need to differentiate between genuine errors and deliberate violation of rules is discussed, as are the educational implications of these findings
Chemical design of non-ionic polymer brushes as biointerfaces : poly(2-oxazine)s outperform both poly(2-oxazoline)s and PEG
The era of poly(ethylene glycol) (PEG) brushes as a universal panacea for preventing non-specific protein adsorption and providing lubrication to surfaces is coming to an end. In the functionalization of medical devices and implants, in addition to preventing non-specific protein adsorption and cell adhesion, polymer-brush formulations are often required to generate highly lubricious films. Poly(2-alkyl-2-oxazoline) (PAOXA) brushes meet these requirements, and depending on their side-group composition, they can form films that match, and in some cases surpass, the bioinert and lubricious properties of PEG analogues. Poly(2-methyl-2-oxazine) (PMOZI) provides an additional enhancement of brush hydration and main-chain flexibility, leading to complete bioinertness and a further reduction in friction. These data redefine the combination of structural parameters necessary to design polymer-brush-based biointerfaces, identifying a novel, superior polymer formulation
α/β–T Cell Receptor (TCR)+CD4−CD8− (NKT) Thymocytes Prevent Insulin-dependent Diabetes Mellitus in Nonobese Diabetic (NOD)/Lt Mice by the Influence of Interleukin (IL)-4 and/or IL-10
We have previously shown that nonobese diabetic (NOD) mice are selectively deficient in α/β-T cell receptor (TCR)+CD4−CD8− NKT cells, a defect that may contribute to their susceptibility to the spontaneous development of insulin-dependent diabetes mellitus (IDDM). The role of NKT cells in protection from IDDM in NOD mice was studied by the infusion of thymocyte subsets into young female NOD mice. A single intravenous injection of 106 CD4−/lowCD8− or CD4−CD8− thymocytes from female (BALB/c × NOD)F1 donors protected intact NOD mice from the spontaneous onset of clinical IDDM. Insulitis was still present in some recipient mice, although the cell infiltrates were principally periductal and periislet, rather than the intraislet pattern characteristic of insulitis in unmanipulated NOD mice. Protection was not associated with the induction of “allogenic tolerance” or systemic autoimmunity. Accelerated IDDM occurs after injection of splenocytes from NOD donors into irradiated adult NOD recipients. When α/β-TCR+ and α/β-TCR− subsets of CD4−CD8− thymocytes were transferred with diabetogenic splenocytes and compared for their ability to prevent the development of IDDM in irradiated adult recipients, only the α/β-TCR+ population was protective, confirming that NKT cells were responsible for this activity. The protective effect in the induced model of IDDM was neutralized by anti–IL-4 and anti–IL-10 monoclonal antibodies in vivo, indicating a role for at least one of these cytokines in NKT cell-mediated protection. These results have significant implications for the pathogenesis and potential prevention of IDDM in humans
Advanced Fuel Cycle Cost Basis
This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste
- …