153 research outputs found

    Candidate Clusters of Galaxies at z > 1.3 Identified in the Spitzer South Pole Telescope Deep Field Survey

    Get PDF
    We present 279 galaxy cluster candidates at z > 1.3 selected from the 94 deg^2 Spitzer South Pole Telescope Deep Field (SSDF) survey. We use a simple algorithm to select candidate high-redshift clusters of galaxies based on Spitzer/IRAC mid-infrared data combined with shallow all-sky optical data. We identify distant cluster candidates adopting an overdensity threshold that results in a high purity (80%) cluster sample based on tests in the Spitzer Deep, Wide-Field Survey of the Boötes field. Our simple algorithm detects all three 1.4 < z ≀ 1.75 X-ray detected clusters in the Boötes field. The uniqueness of the SSDF survey resides not just in its area, one of the largest contiguous extragalactic fields observed with Spitzer, but also in its deep, multi-wavelength coverage by the South Pole Telescope (SPT), Herschel/SPIRE, and XMM-Newton. This rich data set will allow direct or stacked measurements of Sunyaev-Zel'dovich effect decrements or X-ray masses for many of the SSDF clusters presented here, and enable a systematic study of the most distant clusters on an unprecedented scale. We measure the angular correlation function of our sample and find that these candidates show strong clustering. Employing the COSMOS/UltraVista photometric catalog in order to infer the redshift distribution of our cluster selection, we find that these clusters have a comoving number density N_c = (0.7^(+6.3)_(0.6)) x 10^(-7) h^3 Mpc^(-3) and a spatial clustering correlation scale length r_ 0 = (32 ± 7) h^(–1) Mpc. Assuming our sample is comprised of dark matter halos above a characteristic minimum mass, M _(min), we derive that at z = 1.5 these clusters reside in halos larger than M_(min) = 1.5^(+0.9)_(0.7) x 10^(14) h^(-1) M_⊙. We find that the mean mass of our cluster sample is equal to M_(mean) = 1.9^(+1.0)_(0.8) x 10^(14) h^(-1) M_⊙ ; thus, our sample contains the progenitors of present-day massive galaxy clusters

    Characterizing the Mid-IR Extragalactic Sky with WISE and SDSS

    Get PDF
    The Wide-field Infrared Survey Explorer (WISE) has completed its all-sky survey at 3.4-22 micron. We merge the WISE data with optical SDSS data and provide a phenomenological characterization of mid-IR, extragalactic sources. WISE is most sensitive at 3.4micron(W1) and least at 22micron(W4). The W1 band probes massive early-type galaxies out to z\gtrsim1. This is more distant than SDSS identified early-type galaxies, consistent with the fact that 28% of 3.4micron sources have faint or no r-band counterparts (r>22.2). In contrast, 92-95% of 12 and 22micron sources have SDSS optical counterparts with r<22.2. WISE 3.4micron detects 89.8% of the entire SDSS QSO catalog at SNR(W1)>7, but only 18.9% at 22micron with SNR(W4)>5. We show that WISE colors alone are effective in isolating stars (or local early-type galaxies), star-forming galaxies and strong AGN/QSOs at z<3. We highlight three major applications of WISE colors: (1) Selection of strong AGN/QSOs at z0.8 and W2<15.2 criteria, producing a census of this population. The surface density of these strong AGN/QSO candidates is 67.5+-0.14/deg^2. (2) Selection of dust-obscured, type-2 AGN/QSO candidates. We show that WISE W1-W2>0.8, W2<15.2 combined with r-W2>6 (Vega) colors can be used to identify type-2 AGN candidates. The fraction of these type-2 AGN candidates is 1/3rd of all WISE color-selected AGNs. (3) Selection of ULIRGs at z\sim2 with extremely red colors, r-W4>14 or well-detected 22micron sources lacking detections in the 3.4 and 4.6micron bands. The surface density of z~2 r-W4>14 ULIRGs is 0.9+-0.07/deg^2 at SNR(W4)>5 (flux(W4)>=2.5mJy), which is consistent with that inferred from smaller area Spitzer surveys. Optical spectroscopy of a small number of these high-redshift ULIRGs confirms our selection, and reveals a possible trend that optically fainter or r-W4 redder candidates are at higher redshifts.Comment: 41 pages, 20 figures, Accepted for publication by the Astronomical Journa

    THE MASSIVE AND DISTANT CLUSTERS OF WISE SURVEY. III. SUNYAEV-ZEL'DOVICH MASSES OF GALAXY CLUSTERS AT z ~ 1

    Get PDF
    We present CARMA 30 GHz Sunyaev–Zel'dovich (SZ) observations of five high-redshift (z [> over ~] 1), infrared-selected galaxy clusters discovered as part of the all-sky Massive and Distant Clusters of WISE Survey (MaDCoWS). The SZ decrements measured toward these clusters demonstrate that the MaDCoWS selection is discovering evolved, massive galaxy clusters with hot intracluster gas. Using the SZ scaling relation calibrated with South Pole Telescope clusters at similar masses and redshifts, we find these MaDCoWS clusters have masses in the range M[subscript 200] ≈ 2-6 X 10[superscript 14] M[subscript ʘ. Three of these are among the most massive clusters found to date at z [> over ~] 1, demonstrating that MaDCoWS is sensitive to the most massive clusters to at least z = 1.3. The added depth of the AllWISE data release will allow all-sky infrared cluster detection to z ≈ 1.5 and beyond

    The Era of Star Formation in Galaxy Clusters

    Get PDF
    We analyze the star formation properties of 16 infrared-selected, spectroscopically confirmed galaxy clusters at 1 1.35. Using infrared luminosities measured with deep Spitzer/Multiband Imaging Photometer for Spitzer observations at 24 ÎŒm, along with robust optical + IRAC photometric redshifts and spectral-energy-distribution-fitted stellar masses, we present the dust-obscured star-forming fractions, star formation rates, and specific star formation rates in these clusters as functions of redshift and projected clustercentric radius. We find that z ~ 1.4 represents a transition redshift for the ISCS sample, with clear evidence of an unquenched era of cluster star formation at earlier times. Beyond this redshift, the fraction of star-forming cluster members increases monotonically toward the cluster centers. Indeed, the specific star formation rate in the cores of these distant clusters is consistent with field values at similar redshifts, indicating that at z > 1.4 environment-dependent quenching had not yet been established in ISCS clusters. By combining these observations with complementary studies showing a rapid increase in the active galactic nucleus (AGN) fraction, a stochastic star formation history, and a major merging episode at the same epoch in this cluster sample, we suggest that the starburst activity is likely merger-driven and that the subsequent quenching is due to feedback from merger-fueled AGNs. The totality of the evidence suggests we are witnessing the final quenching period that brings an end to the era of star formation in galaxy clusters and initiates the era of passive evolution

    The Growth of Cool Cores and Evolution of Cooling Properties in a Sample of 83 Galaxy Clusters at 0.3 < z < 1.2 Selected from the SPT-SZ Survey

    Full text link
    We present first results on the cooling properties derived from Chandra X-ray observations of 83 high-redshift (0.3 < z < 1.2) massive galaxy clusters selected by their Sunyaev-Zel'dovich signature in the South Pole Telescope data. We measure each cluster's central cooling time, central entropy, and mass deposition rate, and compare to local cluster samples. We find no significant evolution from z~0 to z~1 in the distribution of these properties, suggesting that cooling in cluster cores is stable over long periods of time. We also find that the average cool core entropy profile in the inner ~100 kpc has not changed dramatically since z ~ 1, implying that feedback must be providing nearly constant energy injection to maintain the observed "entropy floor" at ~10 keV cm^2. While the cooling properties appear roughly constant over long periods of time, we observe strong evolution in the gas density profile, with the normalized central density (rho_0/rho_crit) increasing by an order of magnitude from z ~ 1 to z ~ 0. When using metrics defined by the inner surface brightness profile of clusters, we find an apparent lack of classical, cuspy, cool-core clusters at z > 0.75, consistent with earlier reports for clusters at z > 0.5 using similar definitions. Our measurements indicate that cool cores have been steadily growing over the 8 Gyr spanned by our sample, consistent with a constant, ~150 Msun/yr cooling flow that is unable to cool below entropies of 10 keV cm^2 and, instead, accumulates in the cluster center. We estimate that cool cores began to assemble in these massive systems at z ~ 1, which represents the first constraints on the onset of cooling in galaxy cluster cores. We investigate several potential biases which could conspire to mimic this cool core evolution and are unable to find a bias that has a similar redshift dependence and a substantial amplitude.Comment: 17 pages with 15 figures, plus appendix. Published in Ap

    SPT-CLJ2040-4451: An SZ-Selected Galaxy Cluster at z = 1.478 With Significant Ongoing Star Formation

    Full text link
    SPT-CLJ2040-4451 -- spectroscopically confirmed at z = 1.478 -- is the highest redshift galaxy cluster yet discovered via the Sunyaev-Zel'dovich effect. SPT-CLJ2040-4451 was a candidate galaxy cluster identified in the first 720 deg^2 of the South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey, and confirmed in follow-up imaging and spectroscopy. From multi-object spectroscopy with Magellan-I/Baade+IMACS we measure spectroscopic redshifts for 15 cluster member galaxies, all of which have strong [O II] 3727 emission. SPT-CLJ2040-4451 has an SZ-measured mass of M_500,SZ = 3.2 +/- 0.8 X 10^14 M_Sun/h_70, corresponding to M_200,SZ = 5.8 +/- 1.4 X 10^14 M_Sun/h_70. The velocity dispersion measured entirely from blue star forming members is sigma_v = 1500 +/- 520 km/s. The prevalence of star forming cluster members (galaxies with > 1.5 M_Sun/yr) implies that this massive, high-redshift cluster is experiencing a phase of active star formation, and supports recent results showing a marked increase in star formation occurring in galaxy clusters at z >1.4. We also compute the probability of finding a cluster as rare as this in the SPT-SZ survey to be >99%, indicating that its discovery is not in tension with the concordance Lambda-CDM cosmological model.Comment: 14 pages, 8 figures, 4 tables, Accepted to Ap

    A Vacuum-Compatible Cylindrical Inertial Rotation Sensor with Picoradian Sensitivity

    Full text link
    We describe an inertial rotation sensor with a 30-cm cylindrical proof-mass suspended from a pair of 14-Ό{\mu}m thick BeCu flexures. The angle between the proof-mass and support structure is measured with a pair of homodyne interferometers which achieve a noise level of $\sim 5\ \text{prad}/\sqrt{\text{Hz}}$. The sensor is entirely made of vacuum compatible materials and the center of mass can be adjusted remotely

    SPT-CL J0205-5829: A z = 1.32 Evolved Massive Galaxy Cluster in the South Pole Telescope Sunyaev-Zel'dovich Effect Survey

    Get PDF
    The galaxy cluster SPT-CL J0205-5829 currently has the highest spectroscopically-confirmed redshift, z=1.322, in the South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. XMM-Newton observations measure a core-excluded temperature of Tx=8.7keV producing a mass estimate that is consistent with the Sunyaev-Zel'dovich derived mass. The combined SZ and X-ray mass estimate of M500=(4.9+/-0.8)e14 h_{70}^{-1} Msun makes it the most massive known SZ-selected galaxy cluster at z>1.2 and the second most massive at z>1. Using optical and infrared observations, we find that the brightest galaxies in SPT-CL J0205-5829 are already well evolved by the time the universe was <5 Gyr old, with stellar population ages >3 Gyr, and low rates of star formation (<0.5Msun/yr). We find that, despite the high redshift and mass, the existence of SPT-CL J0205-5829 is not surprising given a flat LambdaCDM cosmology with Gaussian initial perturbations. The a priori chance of finding a cluster of similar rarity (or rarer) in a survey the size of the 2500 deg^2 SPT-SZ survey is 69%.Comment: 11 pages, 5 figures, submitted to Ap
    • 

    corecore