231 research outputs found

    A fluorescent mutant of the phosphorus-solubilizing fungus Penicillium bilaiae to image rhizosphere growth

    Get PDF
    Non-Peer ReviewedNovozymes manufactures and markets a phosphate inoculant, JumpStart®, based on the phosphorus-solubilizing fungus Penicillium bilaiae. We are developing a mutant of this fungus that expresses the DsRed-Express fluorescent protein, which will be used as a research tool to allow us to see where and how P. bilaiae interacts with plant roots

    Inconsistency of a dissipative contribution to the mass flux in hydrodynamics

    Full text link
    The possibility of dissipative contributions to the mass flux is considered in detail. A general, thermodynamically consistent framework is developed to obtain such terms, the compatibility of which with general principles is then checked--including Galilean invariance, the possibility of steady rigid rotation and uniform center-of-mass motion, the existence of a locally conserved angular momentum, and material objectivity. All previously discussed scenarios of dissipative mass fluxes are found to be ruled out by some combinations of these principles, but not a new one that includes a smoothed velocity field v-bar. However, this field v-bar is nonlocal and leads to unacceptable consequences in specific situations. Hence we can state with confidence that a dissipative contribution to the mass flux is not possible.Comment: 18 pages; submitted to Phys. Rev.

    Spring-block model for a single-lane highway traffic

    Full text link
    A simple one-dimensional spring-block chain with asymmetric interactions is considered to model an idealized single-lane highway traffic. The main elements of the system are blocks (modeling cars), springs with unidirectional interactions (modeling distance keeping interactions between neighbors), static and kinetic friction (modeling inertia of drivers and cars) and spatiotemporal disorder in the values of these friction forces (modeling differences in the driving attitudes). The traveling chain of cars correspond to the dragged spring-block system. Our statistical analysis for the spring-block chain predicts a non-trivial and rich complex behavior. As a function of the disorder level in the system a dynamic phase-transition is observed. For low disorder levels uncorrelated slidings of blocks are revealed while for high disorder levels correlated avalanches dominates.Comment: 6 pages, 7 figure

    A characteristic particle method for traffic flow simulations on highway networks

    Full text link
    A characteristic particle method for the simulation of first order macroscopic traffic models on road networks is presented. The approach is based on the method "particleclaw", which solves scalar one dimensional hyperbolic conservations laws exactly, except for a small error right around shocks. The method is generalized to nonlinear network flows, where particle approximations on the edges are suitably coupled together at the network nodes. It is demonstrated in numerical examples that the resulting particle method can approximate traffic jams accurately, while only devoting a few degrees of freedom to each edge of the network.Comment: 15 pages, 5 figures. Accepted to the proceedings of the Sixth International Workshop Meshfree Methods for PDE 201

    Structural definition of HLA class II-presented SARS-CoV-2 epitopes reveals a mechanism to escape pre-existing CD4+ T cell immunity

    Get PDF
    CD4+ T cells recognize a broad range of peptide epitopes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which contribute to immune memory and limit COVID-19 disease. We demonstrate that the immunogenicity of SARS-CoV-2 peptides, in the context of the model allotype HLA-DR1, does not correlate with their binding affinity to the HLA heterodimer. Analyzing six epitopes, some with very low binding affinity, we solve X-ray crystallographic structures of each bound to HLA-DR1. Further structural definitions reveal the precise molecular impact of viral variant mutations on epitope presentation. Omicron escaped ancestral SARS-CoV-2 immunity to two epitopes through two distinct mechanisms: (1) mutations to TCR-facing epitope positions and (2) a mechanism whereby a single amino acid substitution caused a register shift within the HLA binding groove, completely altering the peptide-HLA structure. This HLA-II-specific paradigm of immune escape highlights how CD4+ T cell memory is finely poised at the level of peptide-HLA-II presentation

    The Utility of Iron Chelators in the Management of Inflammatory Disorders

    Full text link
    Since iron can contribute to detrimental radical generating processes through the Fenton and Haber-Weiss reactions, it seems to be a reasonable approach to modulate iron-related pathways in inflammation. In the human organism a counterregulatory reduction in iron availability is observed during inflammatory diseases. Under pathological conditions with reduced or increased baseline iron levels different consequences regarding protection or susceptibility to inflammation have to be considered. Given the role of iron in development of inflammatory diseases, pharmaceutical agents targeting this pathway promise to improve the clinical outcome. The objective of this review is to highlight the mechanisms of iron regulation and iron chelation, and to demonstrate the potential impact of this strategy in the management of several acute and chronic inflammatory diseases, including cancer

    Achieving sustainable quality in maternity services – using audit of incontinence and dyspareunia to identify shortfalls in meeting standards

    Get PDF
    BACKGROUND: Some complications of childbirth (for example, faecal incontinence) are a source of social embarrassment for women, and are often under reported. Therefore, it was felt important to determine levels of complications (against established standards) and to consider obstetric measures aimed at reducing them. METHODS: Clinical information was collected on 1036 primiparous women delivering at North and South Staffordshire Acute and Community Trusts over a 5-month period in 1997. A questionnaire was sent to 970 women which included self-assessment of levels of incontinence and dyspareunia prior to pregnancy, at 6 weeks post delivery and 9 to 14 months post delivery. RESULTS: The response rate was 48%(470/970). Relatively high levels of obstetric interventions were found. In addition, the rates of instrumental deliveries differed between the two hospitals. The highest rates of postnatal symptoms had occurred at 6 weeks, but for many women problems were still present at the time of the survey. At 9–14 months high rates of dyspareunia (29%(102/347)) and urinary incontinence (35%(133/382)) were reported. Seventeen women (4%) complained of faecal incontinence at this time. Similar rates of urinary incontinence and dyspareunia were seen regardless of mode of delivery. CONCLUSION: Further work should be undertaken to reduce the obstetric interventions, especially instrumental deliveries. Improvements in a number of areas of care should be undertaken, including improved patient information, improved professional communication and improved professional recognition and management of third degree tears. It is likely that these measures would lead to a reduction in incontinence and dyspareunia after childbirth

    Gas-kinetic derivation of Navier-Stokes-like traffic equations

    Full text link
    Macroscopic traffic models have recently been severely criticized to base on lax analogies only and to have a number of deficiencies. Therefore, this paper shows how to construct a logically consistent fluid-dynamic traffic model from basic laws for the acceleration and interaction of vehicles. These considerations lead to the gas-kinetic traffic equation of Paveri-Fontana. Its stationary and spatially homogeneous solution implies equilibrium relations for the `fundamental diagram', the variance-density relation, and other quantities which are partly difficult to determine empirically. Paveri-Fontana's traffic equation allows the derivation of macroscopic moment equations which build a system of non-closed equations. This system can be closed by the well proved method of Chapman and Enskog which leads to Euler-like traffic equations in zeroth-order approximation and to Navier-Stokes-like traffic equations in first-order approximation. The latter are finally corrected for the finite space requirements of vehicles. It is shown that the resulting model is able to withstand the above mentioned criticism.Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.htm
    corecore