199 research outputs found
The roles of latent heating and dust in the structure and variability of the northern Martian polar vortex
The winter polar vortices on Mars are annular in terms of their potential
vorticity (PV) structure, a phenomenon identified in observations, reanalysis
and some numerical simulations. Some recent modeling studies have proposed that
condensation of atmospheric carbon dioxide at the winter pole is a contributing
factor to maintaining the annulus through the release of latent heat. Dust and
topographic forcing are also known to be causes of internal and interannual
variability in the polar vortices. However, coupling between these factors
remains uncertain, and previous studies of their impact on vortex structure and
variability have been largely limited to a single Martian global climate model
(MGCM). Here, by further developing a novel MGCM, we decompose the relative
roles of latent heat and dust as drivers for the variability and structure of
the northern Martian polar vortex. We also consider how Martian topography
modifies the driving response. By also analyzing a reanalysis dataset we show
that there is significant dependence in the polar vortex structure and
variability on the observations assimilated. In both model and reanalysis, high
atmospheric dust loading (such as that seen during a global dust storm) can
disrupt the vortex, cause the destruction of PV in the low-mid altitudes (> 0.1
hPa), and significantly reduce spatial and temporal vortex variability. Through
our simulations, we find that the combination of dust and topography primarily
drives the eddy activity throughout the Martian year, and that although latent
heat release can produce an annular vortex, it has a relatively minor effect on
vortex variability.Comment: 16 pages, 14 figures, The Planetary Science Journa
Multi-level Dynamical Systems: Connecting the Ruelle Response Theory and the Mori-Zwanzig Approach
In this paper we consider the problem of deriving approximate autonomous
dynamics for a number of variables of a dynamical system, which are weakly
coupled to the remaining variables. In a previous paper we have used the Ruelle
response theory on such a weakly coupled system to construct a surrogate
dynamics, such that the expectation value of any observable agrees, up to
second order in the coupling strength, to its expectation evaluated on the full
dynamics. We show here that such surrogate dynamics agree up to second order to
an expansion of the Mori-Zwanzig projected dynamics. This implies that the
parametrizations of unresolved processes suited for prediction and for the
representation of long term statistical properties are closely related, if one
takes into account, in addition to the widely adopted stochastic forcing, the
often neglected memory effects.Comment: 14 pages, 1 figur
Dispersive stabilization of the inverse cascade for the Kolmogorov flow
It is shown by perturbation techniques and numerical simulations that the
inverse cascade of kink-antikink annihilations, characteristic of the
Kolmogorov flow in the slightly supercritical Reynolds number regime, is halted
by the dispersive action of Rossby waves in the beta-plane approximation. For
beta tending to zero, the largest excited scale is proportional to the
logarithm of one over beta and differs strongly from what is predicted by
standard dimensional phenomenology which ignores depletion of nonlinearity.Comment: 4 pages, LATEX, 3 figures. v3: revised version with minor correction
Magazine and reader constructions of 'metrosexuality' and masculinity: a membership categorisation analysis
Since the launch of men's lifestyle magazines in the 1980s, academic literature has predominantly focused on them as a cultural phenomenon arising from entrepreneurial and commercial initiatives and/or as cultural texts that proffer representations of masculinity such as 'new lad' and 'new dad'. This paper steps aside from the focus on culture and, instead, treats magazine content as a discursive space in which gender and sexuality are oriented to, negotiated, and accomplished within and beyond the magazine itself (i.e. through readers' responses). Specifically, membership categorisation analysis is deployed to explore how the relatively new (and perhaps alternative) category for men - 'metrosexual' - is presented and received. Our analysis suggests that masculinity concerns are central in debates about 'metrosexuality', with self-identified 'metrosexuals' invoking heterosexual prowess and self-respect on the one hand, and critics (e.g. selfidentified 'real men') lamenting 'metrosexuality' for its perceived effeminacy and lack of authenticity on the other. Implications for understanding contemporary masculinities are discussed
The third-order structure function in two dimensions: The Rashomon effect
We study the third-order longitudinal structure function, S3(r), in two-dimensional turbulence. In three dimensions, there is considerable theoretical, experimental, and numerical consensus regarding the validity of Kolmogorov’s arch-famous “four fifth law” for S3(r). By contrast, in two dimensions, two disparate cascades, changed dissipation anomalies, a large-scale drag, and other factors conspire to create several versions of the S3(r) “law.” This single quantity can vary considerably when viewed from different perspectives, reminiscent of the “Rashomon effect” in anthropology. After reviewing the history and usage of S3(r) in two-dimensional turbulence, we show that S3(r) generically embodies a mixture of energy and enstrophy fluxes. Building on this result, we derive S3(r) laws for freely decaying and forced two-dimensional turbulent flows, where we also account for the effects of a large-scale drag, an inextricable feature of quasi two-dimensional turbulence in experimental and atmospheric flows. We draw attention to the caution needed in interpreting S3(r) in two-dimensional turbulence
Delayed baroclinic response of the Antarctic circumpolar current to surface wind stress
Author Posting. © Science in China Press, 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Science in China Series D: Earth Sciences 51 (2008): 1036-1043, doi:10.1007/s11430-008-0074-8.Antarctic Circumpolar Current (ACC) responds to the surface windstress via two processes, i.e., instant barotropic process and delayed baroclinic process. This study focuses on the baroclinic instability mechanism in ACC. That is, the strengthening of surface zonal windstress causes the enhanced tilting of the isopycnal surface, which leads to the intense baroclinic instability. Simultaneously, the mesoscale eddies resulting from the baroclinic instability facilitate the transformation of mean potential energy to eddy energy, which causes the remarkable decrease of the ACC volume transport with the 2-year lag time. This delayed negative correlation between the ACC transport and the zonal windstress may account for the steadiness of the ACC transport in these two decades.Supported by NSCF Outstanding Young Scientist Award (Grant No. 40625017) and the National Basic Research Program of China (Grant No. 2006CB403604). The research was also supported by W. Alan Clark Chair from Woods Hole Oceanographic Institution for RXH and NOAA GLERL contribution No. 1462 for J
Recent Advances Concerning Certain Class of Geophysical Flows
This paper is devoted to reviewing several recent developments concerning
certain class of geophysical models, including the primitive equations (PEs) of
atmospheric and oceanic dynamics and a tropical atmosphere model. The PEs for
large-scale oceanic and atmospheric dynamics are derived from the Navier-Stokes
equations coupled to the heat convection by adopting the Boussinesq and
hydrostatic approximations, while the tropical atmosphere model considered here
is a nonlinear interaction system between the barotropic mode and the first
baroclinic mode of the tropical atmosphere with moisture.
We are mainly concerned with the global well-posedness of strong solutions to
these systems, with full or partial viscosity, as well as certain singular
perturbation small parameter limits related to these systems, including the
small aspect ratio limit from the Navier-Stokes equations to the PEs, and a
small relaxation-parameter in the tropical atmosphere model. These limits
provide a rigorous justification to the hydrostatic balance in the PEs, and to
the relaxation limit of the tropical atmosphere model, respectively. Some
conditional uniqueness of weak solutions, and the global well-posedness of weak
solutions with certain class of discontinuous initial data, to the PEs are also
presented.Comment: arXiv admin note: text overlap with arXiv:1507.0523
Rotating Shallow Water Dynamics: Extra Invariant and the Formation of Zonal Jets
We show that rotating shallow water dynamics possesses an approximate
(adiabatic-type) positive quadratic invariant, which exists not only at
mid-latitudes (where its analogue in the quasigeostrophic equation has been
previously investigated), but near the equator as well (where the
quasigeostrophic equation is inapplicable). Deriving the extra invariant, we
find "small denominators" of two kinds: (1) due to the triad resonances (as in
the case of the quasigeostrophic equation) and (2) due to the equatorial limit,
when the Rossby radius of deformation becomes infinite. We show that the "small
denominators" of both kinds can be canceled. The presence of the extra
invariant can lead to the generation of zonal jets. We find that this tendency
should be especially pronounced near the equator. Similar invariant occurs in
magnetically confined fusion plasmas and can lead to the emergence of zonal
flows.Comment: 29 pages, 4 figure
Recommended from our members
Up-gradient eddy fluxes of potential vorticity near the subtropical jet
The role of eddy fluxes in the general circulation is
often approached by treating eddies as (macro)turbulence.
In this approach, the eddies act to diffuse certain quasiconservative quantities, such as potential vorticity (PV), along isentropic surfaces in the free atmosphere. The eddy fluxes are determined primarily by the eddy diffusivities and are necessarily down-gradient of the basic state PV field. Support for the (macro)turbulence approach stems from the fact that the eddy fluxes of PV in the free atmosphere are generally down-gradient in the long-term mean. Here we call attention to a pronounced and significant region of upgradient eddy PV fluxes on the poleward flank of the jet core in both hemispheres. The region of up-gradient (i.e., notionally “antidiffusive”) eddy PV fluxes is most pronounced during the winter and spring seasons and partially contradicts the turbulence approach described above. Analyses of the PV variance (potential enstrophy) budget suggest that the up-gradient PV fluxes represent local wave decay and are maintained by poleward fluxes of PV variance. Finite-amplitude effects thus represent leading order contributions to the PV variance budget, whereas dissipation is only of secondary importance locally. The appearance of up-gradient PV fluxes in the long-term mean is associated with the poleward shift of the jet—and thus the region of wave decay relative to wave growth—following wave-breaking events
Generalized Contour Dynamics: A Review
Contour dynamics is a computational technique to solve for the motion of vortices in incompressible inviscid flow. It is a Lagrangian technique in which the motion of contours is followed, and the velocity field moving the contours can be computed as integrals along the contours. Its best-known examples are in two dimensions, for which the vorticity between contours is taken to be constant and the vortices are vortex patches, and in axisymmetric flow for which the vorticity varies linearly with distance from the axis of symmetry. This review discusses generalizations that incorporate additional physics, in particular, buoyancy effects and magnetic fields, that take specific forms inside the vortices and preserve the contour dynamics structure. The extra physics can lead to time-dependent vortex sheets on the boundaries, whose evolution must be computed as part of the problem. The non-Boussinesq case, in which density differences can be important, leads to a coupled system for the evolution of both mean interfacial velocity and vortex sheet strength. Helical geometry is also discussed, in which two quantities are materially conserved and whose evolution governs the flow
- …