84 research outputs found

    Photoluminescence Detected Doublet Structure in the Integer and Fractional Quantum Hall Regime

    Get PDF
    We present here the results of polarized magneto-photoluminescence measurements on a high mobility single-heterojunction. The presence of a doublet structure over a large magnetic field range (2>nu>1/6) is interpreted as possible evidence for the existence of a magneto-roton minima of the charged density waves. This is understood as an indication of strong electronic correlation even in the case of the IQHE limit.Comment: submitted to Solid State Communication

    Circular-Polarization Dependent Cyclotron Resonance in Large-Area Graphene in Ultrahigh Magnetic Fields

    Get PDF
    Using ultrahigh magnetic fields up to 170 T and polarized midinfrared radiation with tunable wavelengths from 9.22 to 10.67 um, we studied cyclotron resonance in large-area graphene grown by chemical vapor deposition. Circular-polarization dependent studies reveal strong p-type doping for as-grown graphene, and the dependence of the cyclotron resonance on radiation wavelength allows for a determination of the Fermi energy. Thermal annealing shifts the Fermi energy to near the Dirac point, resulting in the simultaneous appearance of hole and electron cyclotron resonance in the magnetic quantum limit, even though the sample is still p-type, due to graphene's linear dispersion and unique Landau level structure. These high-field studies therefore allow for a clear identification of cyclotron resonance features in large-area, low-mobility graphene samples.Comment: 9 pages, 3 figure

    The High Magnetic Field Phase Diagram of a Quasi-One Dimensional Metal

    Full text link
    We present a unique high magnetic field phase of the quasi-one dimensional organic conductor (TMTSF)2_2ClO4_4. This phase, termed "Q-ClO4_4", is obtained by rapid thermal quenching to avoid ordering of the ClO4_4 anion. The magnetic field dependent phase of Q-ClO4_4 is distinctly different from that in the extensively studied annealed material. Q-ClO4_4 exhibits a spin density wave (SDW) transition at ≈\approx 5 K which is strongly magnetic field dependent. This dependence is well described by the theoretical treatment of Bjelis and Maki. We show that Q-ClO4_4 provides a new B-T phase diagram in the hierarchy of low-dimensional organic metals (one-dimensional towards two-dimensional), and describe the temperature dependence of the of the quantum oscillations observed in the SDW phase.Comment: 10 pages, 4 figures, preprin

    Fully connected bulk Pb 1−

    Full text link
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder

    Magnetic susceptibility of the normal-superconducting transition in high-purity single-crystal α-uranium

    Get PDF
    We report complex ac magnetic susceptibility measurements of a superconducting transition in very high-quality single-crystal alpha-uranium using microfabricated coplanar magnetometers. We identify an onset of superconductivity at Tapproximate to0.7 K in both the real and imaginary components of the susceptibility which is confirmed by resistivity data. A superconducting volume fraction argument, based on a comparison with a calibration YBa2Cu3O7-delta sample, indicates that superconductivity in these samples may be filamentary. Our data also demonstrate the sensitivity of the coplanar micro-magnetometers, which are ideally suited to measurements in pulsed magnetic fields exceeding 100 T

    Experimental determination of B-T phase diagram of YBa_2Cu_3O_7-d to 150T for B perpendicular to c

    Full text link
    The B-T phase diagram for thin film YBa_2Cu_3O_7-d with B parallel to the superconducting layers has been constructed from GHz transport measurements to 150T. Evidence for a transition from a high T regime dominated by orbital effects, to a low T regime where paramagnetic limiting drives the quenching of superconductivity, is seen. Up to 110T the upper critical field is found to be linear in T and in remarkable agreement with extrapolation of the longstanding result of Welp et al arising from magnetisation measurements to 6T. Beyond this a departure from linear behaviour occurs at T=74K, where a 3D-2D crossover is expected to occur.Comment: 4 pages, 4 figure
    • …
    corecore