211 research outputs found

    ON A ZONAL POLYNOMIAL INTEGRAL

    Get PDF
    A certain multiple integral occurring in the studies of Beherens-Fisher multivariate problem has been evaluated b

    On Selberg’s beta integrals

    Get PDF
    Publisher's version/PDFAskey and Richards (1989) evaluate Selberg’s first and second beta integrals using Aomoto’s (1987) formidable methodology of setting and solving a first order difference equation. Using this methodology they evaluate certain other beta and gamma type integrals. However, Selberg’s first and second beta and gamma type integrals very elegantly fit within the framework of hypercomplex multivariate normal distribution theory developed by Kabe (1984), and hence can be evaluated using the known multivariate normal distribution theory integrals

    Very High Energy Gamma Rays from PSR1706-44

    Full text link
    We have obtained evidence of gamma-ray emission above 1 TeV from PSR1706-44, using a ground-based telescope of the atmospheric \v{C}erenkov imaging type located near Woomera, South Australia. This object, a γ\gamma-ray source discovered by the COS B satellite (2CG342-02), was identified with the radio pulsar through the discovery of a 102 ms pulsed signal with the EGRET instrument of the Compton Gamma Ray Observatory. The flux of the present observation above a threshold of 1 TeV is ∼\bf \sim 1 ⋅\cdot 10−11^{-11} photons cm−2^{-2} s−1^{-1}, which is two orders of magnitude smaller than the extrapolation from GeV energies. The analysis is not restricted to a search for emission modulated with the 102 ms period, and the reported flux is for all γ\gamma-rays from PSR1706-44, pulsed and unpulsed. The energy output in the TeV region corresponds to about 10−3^{-3} of the spin down energy loss rate of the neutron star.Comment: 13 pages, latex format (article), 2 figures include

    On Planetary Companions to the MACHO-98-BLG-35 Microlens Star

    Get PDF
    We present observations of microlensing event MACHO-98-BLG-35 which reached a peak magnification factor of almost 80. These observations by the Microlensing Planet Search (MPS) and the MOA Collaborations place strong constraints on the possible planetary system of the lens star and show intriguing evidence for a low mass planet with a mass fraction 4×10−5≤ϵ≤2×10−44\times 10^{-5} \leq \epsilon \leq 2\times 10^{-4}. A giant planet with ϵ=10−3\epsilon = 10^{-3} is excluded from 95% of the region between 0.4 and 2.5 RER_E from the lens star, where RER_E is the Einstein ring radius of the lens. This exclusion region is more extensive than the generic "lensing zone" which is 0.6−1.6RE0.6 - 1.6 R_E. For smaller mass planets, we can exclude 57% of the "lensing zone" for ϵ=10−4\epsilon = 10^{-4} and 14% of the lensing zone for ϵ=10−5\epsilon = 10^{-5}. The mass fraction ϵ=10−5\epsilon = 10^{-5} corresponds to an Earth mass planet for a lensing star of mass \sim 0.3 \msun. A number of similar events will provide statistically significant constraints on the prevalence of Earth mass planets. In order to put our limits in more familiar terms, we have compared our results to those expected for a Solar System clone averaging over possible lens system distances and orientations. We find that such a system is ruled out at the 90% confidence level. A copy of the Solar System with Jupiter replaced by a second Saturn mass planet can be ruled out at 70% confidence. Our low mass planetary signal (few Earth masses to Neptune mass) is significant at the 4.5σ4.5\sigma confidence level. If this planetary interpretation is correct, the MACHO-98-BLG-35 lens system constitutes the first detection of a low mass planet orbiting an ordinary star without gas giant planets.Comment: ApJ, April 1, 2000; 27 pages including 8 color postscript figure
    • …
    corecore