25,644 research outputs found
The String Calculation of QCD Wilson Loops on Arbitrary Surfaces
Compact string expressions are found for non-intersecting Wilson loops in
SU(N) Yang-Mills theory on any surface (orientable or nonorientable) as a
weighted sum over covers of the surface. All terms from the coupled chiral
sectors of the 1/N expansion of the Wilson loop expectation values are
included.Comment: 10 pages, LaTeX, no figure
Strings and Branes in Nonabelian Gauge Theory
It is an old speculation that SU(N) gauge theory can alternatively be
formulated as a string theory. Recently this subject has been revived, in the
wake of the discovery of D-branes. In particular, it has been argued that at
least some conformally invariant cousins of the theory have such a string
representation. This is a pedagogical introduction to these developments for
non-string theorists. Some of the existing arguments are simplified.Comment: Reference adde
Normalization of the covariant three-body bound state vertex function
The normalization condition for the relativistic three nucleon Bethe-Salpeter
and Gross bound state vertex functions is derived, for the first time, directly
from the three body wave equations. It is also shown that the relativistic
normalization condition for the two body Gross bound state vertex function is
identical to the requirement that the bound state charge be conserved, proving
that charge is automatically conserved by this equation.Comment: 24 pages, 9 figures, published version, minor typos correcte
Theoretical investigation of finite size effects at DNA melting
We investigated how the finiteness of the length of the sequence affects the
phase transition that takes place at DNA melting temperature. For this purpose,
we modified the Transfer Integral method to adapt it to the calculation of both
extensive (partition function, entropy, specific heat, etc) and non-extensive
(order parameter and correlation length) thermodynamic quantities of finite
sequences with open boundary conditions, and applied the modified procedure to
two different dynamical models. We showed that rounding of the transition
clearly takes place when the length of the sequence is decreased. We also
performed a finite-size scaling analysis of the two models and showed that the
singular part of the free energy can indeed be expressed in terms of an
homogeneous function. However, both the correlation length and the average
separation between paired bases diverge at the melting transition, so that it
is no longer clear to which of these two quantities the length of the system
should be compared. Moreover, Josephson's identity is satisfied for none of the
investigated models, so that the derivation of the characteristic exponents
which appear, for example, in the expression of the specific heat, requires
some care
Calculating the Rest Tension for a Polymer of String Bits
We explore the application of approximation schemes from many body physics,
including the Hartree-Fock method and random phase approximation (RPA), to the
problem of analyzing the low energy excitations of a polymer chain made up of
bosonic string bits. We accordingly obtain an expression for the rest tension
of the bosonic relativistic string in terms of the parameters
characterizing the microscopic string bit dynamics. We first derive an exact
connection between the string tension and a certain correlation function of the
many-body string bit system. This connection is made for an arbitrary
interaction potential between string bits and relies on an exact dipole sum
rule. We then review an earlier calculation by Goldstone of the low energy
excitations of a polymer chain using RPA. We assess the accuracy of the RPA by
calculating the first order corrections. For this purpose we specialize to the
unique scale invariant potential, namely an attractive delta function potential
in two (transverse) dimensions. We find that the corrections are large, and
discuss a method for summing the large terms. The corrections to this improved
RPA are roughly 15\%.Comment: 44 pages, phyzzx, psfig required, Univ. of Florida preprint,
UFIFT-HEP-94
The Solar Test of the Equivalence Principle
The Earth, Mars, Sun, Jupiter system allows for a sensitive test of the
strong equivalence principle (SEP) which is qualitatively different from that
provided by Lunar Laser Ranging. Using analytic and numerical methods we
demonstrate that Earth-Mars ranging can provide a useful estimate of the SEP
parameter . Two estimates of the predicted accuracy are derived and
quoted, one based on conventional covariance analysis, and another (called
``modified worst case'' analysis) which assumes that systematic errors dominate
the experiment. If future Mars missions provide ranging measurements with an
accuracy of meters, after ten years of ranging the expected accuracy
for the SEP parameter will be of order .
These ranging measurements will also provide the most accurate determination of
the mass of Jupiter, independent of the SEP effect test.Comment: 10 pages; LaTeX; three figures upon reques
Microcanonical mean-field thermodynamics of self-gravitating and rotating systems
We derive the global phase diagram of a self-gravitating -body system
enclosed in a finite three-dimensional spherical volume as a function of
total energy and angular momentum, employing a microcanonical mean-field
approach. At low angular momenta (i.e. for slowly rotating systems) the known
collapse from a gas cloud to a single dense cluster is recovered. At high
angular momenta, instead, rotational symmetry can be spontaneously broken and
rotationally asymmetric structures (double clusters) appear.Comment: 4 pages, 4 figures; to appear in Phys. Rev. Let
Self-interaction effects on screening in three-dimensional QED
We have shown that self interaction effects in massive quantum
electrodynamics can lead to the formation of bound states of quark antiquark
pairs. A current-current fermion coupling term is introduced, which induces a
well in the potential energy profile. Explicit expressions of the effective
potential and renormalized parameters are provided
- …