1,381 research outputs found

    Transport properties of a meson gas

    Get PDF
    We present recent results on a systematic method to calculate transport coefficients for a meson gas (in particular, we analyze a pion gas) at low temperatures in the context of Chiral Perturbation Theory. Our method is based on the study of Feynman diagrams with a power counting which takes into account collisions in the plasma by means of a non-zero particle width. In this way, we obtain results compatible with analysis of Kinetic Theory with just the leading order diagram. We show the behavior with temperature of electrical and thermal conductivities and shear and bulk viscosities, and we discuss the fundamental role played by unitarity. We obtain that bulk viscosity is negligible against shear viscosity near the chiral phase transition. Relations between the different transport coefficients and bounds on them based on different theoretical approximations are also discussed. We also comment on some applications to heavy-ion collisions.Comment: 4 pages, 4 figures, IJMPE style. Contribution to the International Workshop X Hadron Physics (2007), Florianopolis, Brazil. Accepted for publication in IJMPE; 1 typo correcte

    Bulk viscosity and the conformal anomaly in the pion gas

    Get PDF
    We calculate the bulk viscosity of the massive pion gas within Unitarized Chiral Perturbation Theory. We obtain a low temperature peak arising from explicit conformal breaking due to the pion mass and another peak near the critical temperature, dominated by the conformal anomaly through gluon condensate terms. The correlation between bulk viscosity and conformal breaking supports a recent QCD proposal. We discuss the role of resonances, heavier states and large-NcN_c counting.Comment: Revised version accepted in Phys.Rev.Lett. 4 pages, 3 figure

    The Inverse Amplitude Method and Adler Zeros

    Get PDF
    The Inverse Amplitude Method is a powerful unitarization technique to enlarge the energy applicability region of Effective Lagrangians. It has been widely used to describe resonances from Chiral Perturbation Theory as well as for the Strongly Interacting Symmetry Breaking Sector. In this work we show how it can be slightly modified to account also for the sub-threshold region, incorporating correctly the Adler zeros required by chiral symmetry and eliminating spurious poles. These improvements produce negligible effects on the physical region.Comment: 17 pages, 4 figure

    Pion scattering poles and chiral symmetry restoration

    Get PDF
    Using unitarized Chiral Perturbation Theory methods, we perform a detailed analysis of the ππ\pi\pi scattering poles f0(600)f_0(600) and ρ(770)\rho(770) behaviour when medium effects such as temperature or density drive the system towards Chiral Symmetry Restoration. In the analysis of real poles below threshold, we show that it is crucial to extend properly the unitarized amplitudes so that they match the perturbative Adler zeros. Our results do not show threshold enhancement effects at finite temperature in the f0(600)f_0(600) channel, which remains as a pole of broad nature. We also implement T=0 finite density effects related to chiral symmetry restoration, by varying the pole position with the pion decay constant. Although this approach takes into account only a limited class of contributions, we reproduce the expected finite density restoration behaviour, which drives the poles towards the real axis, producing threshold enhancement and ππ\pi\pi bound states. We compare our results with several model approaches and discuss the experimental consequences, both in Relativistic Heavy Ion Collisions and in πππ\pi\to \pi\pi and γππ\gamma\to \pi\pi reactions in nuclei.Comment: 17 pages, 9 figures, final version to appear in Phys.Rev.D, added comments and reference

    Chiral perturbation theory for nonzero chiral imbalance

    Get PDF
    We construct the most general low-energy effective lagrangian including local parity violating terms parametrized by an axial chemical potential or chiral imbalance mu (5), up to O mml:mfenced close=")" open="("p4 ml:mfenced> order in the chiral expansion for two light flavours. For that purpose, we work within the Chiral Perturbation Theory framework where only pseudo-NGB fields are included, following the external source method. The O mml:mfenced close=")" open="("p2 mml:mfenced> lagrangian is only modified by constant terms, while the O mml:mfenced close=")" open="("p4 mml:mfenced one includes new terms proportional to mu 52 and new low-energy constants (LEC), which are renormalized and related to particular observables. In particular, we analyze the corrections to the pion dispersion relation and observables related to the vacuum energy density, namely the light quark condensate, the chiral and topological susceptibilities and the chiral charge density, providing numerical determinations of the new LEC when possible. In particular, we explore the dependence of the chiral restoration temperature T-c with mu (5). An increasing T-c(mu (5)) is consistent with our fits to lattice data of the ChPT-based expressions. Although lattice uncertainties are still large and translate into the new LEC determination, a consistent physical description of those observables emerges from our present work, providing a theoretically robust model-independent framework for further study of physical systems where parity-breaking effects may be relevant, such as heavy-ion collisions

    Neutral pion decay in dense skyrmion matter

    Get PDF
    We study the density dependence of the decay π0γγ\pi^0\to \gamma \gamma using the Skyrme Lagrangian to describe simultaneously both the matter background and mesonic fluctuations. Pion properties such as mass and decay constant are modified by the medium. This leads to large suppression at high density of both photo-production from the neutral pion and the reverse process. The in-medium effective charge of π±\pi^{\pm} are also discussed in the same framework.Comment: 8 pages, 4 figures. Corrections in light of referee comment

    Transport coefficients in Chiral Perturbation Theory

    Get PDF
    We present recent results on the calculation of transport coefficients for a pion gas at zero chemical potential in Chiral Perturbation Theory using Linear Response Theory. More precisely, we show the behavior of DC conductivity and shear viscosity at low temperatures. To compute transport coefficients, the standard power counting of ChPT has to be modified. The effects derived from imposing unitarity are also analyzed. As physical applications in Relativistic Heavy Ion Collisions, we show the relation of the DC conductivity to soft-photon production and phenomenological effects related to a nonzero shear viscosity. In addition, our values for the shear viscosity to entropy ratio satisfy the KSS bound.Comment: 3 pages, 6 figures, EPJA style. Talk given at the QNP06 conference in Madrid, and accepted for publication in EPJ

    Nature of the f_0(600) from its N_c dependence at two loops in unitarized Chiral Perturbation Theory

    Get PDF
    By using unitarized two-loop Chiral Perturbation Theory partial waves to describe pion-pion scattering we find that the dominant component of the lightest scalar meson does not follow the q-qbar dependence on the number of colors that, in contrast, is obeyed by the lightest vectors. The method suggests that a subdominant q-qbar component of the f_0(600) possibly originates around 1 GeV.Comment: 4 pages, 1 Figure. To appear in Phys. Rev. Let

    Chiral Symmetry and light resonances in hot and dense matter

    Get PDF
    We present a study of the ππ\pi\pi scattering amplitude in the σ\sigma and ρ\rho channels at finite temperature and nuclear density within a chiral unitary framework. Meson resonances are dynamically generated in our approach, which allows us to analyze the behavior of their associated scattering poles when the system is driven towards chiral symmetry restoration. Medium effects are incorporated in three ways: (a) by thermal corrections of the unitarized scattering amplitudes, (b) by finite nuclear density effects associated to a renormalization of the pion decay constant, and complementarily (c) by extending our calculation of the scalar-isoscalar channel to account for finite nuclear density and temperature effects in a microscopic many-body implementation of pion dynamics. Our results are discussed in connection with several phenomenological aspects relevant for nuclear matter and Heavy-Ion Collision experiments, such as ρ\rho mass scaling vs broadening from dilepton spectra and chiral restoration signals in the σ\sigma channel. We also elaborate on the molecular nature of ππ\pi\pi resonances.Comment: 14 pages, 14 figures. Contribution to Hard Probes 2008, Illa de A Toxa, Spain, June 8th-14th 200

    Control of dissipation in superconducting films by magnetic stray fields

    Get PDF
    Hybrid superconducting/magnetic nanostructures on Si substrates have been built with identical physical dimensions but different magnetic configurations. By constructing arrays based on Co-dots with in-plane, out-of-plane, and vortex state magnetic configurations, the stray fields are systematically tuned. Dissipation in the mixed state of superconductors can be decreased (increased) by several orders of magnitude by decreasing (increasing) the stray magnetic fields. Furthermore, ordering of the stray fields over the entire array helps to suppress dissipation and enhance commensurability effects increasing the number of dissipation minima
    corecore