582 research outputs found

    Hydrophilic Crosslinked TEMPO‐Methacrylate Copolymers – a Straight Forward Approach towards Aqueous Semi‐Organic Batteries

    Get PDF
    Abstract Crosslinked hydrophilic poly(2,2,6,6‐tetramethylpiperidinyl‐ N ‐oxyl‐co‐[2‐(methacryloyloxy)‐ethyl]trimethyl ammonium chloride) [poly(TEMPO‐ co ‐METAC)] polymers with different monomer ratios are synthesized and characterized regarding a utilization as electrode material in organic batteries. These polymers can be synthesized rapidly utilizing commercial starting materials and reveal an increased hydrophilicity compared to the state‐of‐the‐art poly(2,2,6,6‐tetramethylpiperidinyl‐ N ‐oxyl‐4‐methacrylate) (PTMA). By increasing the hydrophilicity of the polymer, a preparation of cathode composites is enabled, which can be used for aqueous semi‐organic batteries. Detailed battery testing confirms that the additional METAC groups do not impair the battery behavior while enabling straight‐forward zinc‐TEMPO batteries.Organic cathode in aqueous electrolyte : A crosslinked hydrophilic 2,2,6,6‐tetramethylpiperidine‐ N ‐oxyl radical (TEMPO) bearing polymer was synthesized, which enables aqueous battery chemistries that have not been compatible with poly(TEMPO‐methacrylate) derived structures before. Extensive battery testing was performed, to reveal the battery chemistry of the polymer containing composite electrodes in an aqueous semi‐organic zinc coin‐cell setup. imag

    Demonstration of asymmetric electron conduction in pseudosymmetrical photosynthetic reaction centre proteins in an electrical circuit

    Get PDF
    Photosynthetic reaction centres show promise for biomolecular electronics as nanoscale solar-powered batteries and molecular diodes that are amenable to atomic-level re-engineering. In this work the mechanism of electron conduction across the highly tractable Rhodobacter sphaeroides reaction centre is characterized by conductive atomic force micro-scopy. We find, using engineered proteins of known structure, that only one of the two cofactor wires connecting the positive and negative termini of this reaction centre is capable of conducting unidirectional current under a suitably oriented bias, irrespective of the magnitude of the bias or the applied force at the tunnelling junction. This behaviour, strong functional asymmetry in a largely symmetrical protein–cofactor matrix, recapitulates the strong functional asymmetry characteristic of natural photochemical charge separation, but it is surprising given that the stimulus for electron flow is simply an externally applied bias. Reasons for the electrical resistance displayed by the so-called B-wire of cofactors are explored

    Aqueous Redox Flow Battery Suitable for High Temperature Applications Based on a Tailor‐Made Ferrocene Copolymer

    Get PDF
    Abstract Water‐soluble, and ferrocene‐containing methacrylamide copolymers with different comonomer ratios of the solubility‐promoting comonomer [2‐(methacryloyloxy)‐ethyl]‐trimethylammonium chloride (METAC) are synthesized in order to obtain a novel, temperature‐stable electrolyte for aqueous redox flow batteries. The electrochemical properties of one chosen polymer are studied in detail by cyclic voltammetry and rotating disc electrode (RDE) investigations. Additionally, the diffusion coefficient and the charge transfer rate are obtained from these measurements. The diffusion coefficient from RDE is compared to the value from synthetic boundary experiments at battery concentrations, using an analytical ultracentrifuge, yielding diffusion coefficients of a similar order of magnitude. The polymer is further tested in a redox flow battery setup. While performing charge and discharge experiments against the well‐established bis ‐(trimethylammoniumpropyl)‐viologen, the polymer reveals high columbic efficiencies of >99.8% and desirable apparent capacity retention, both at room temperature as well as at 60 °C. Further experiments are conducted to verify the stability of the active compounds under these conditions in both charge states. Lastly, the electrochemical behavior is linked to the characteristics of the polymers concerning absolute values of the molar mass and diffusion coefficients.A new ferrocene containing monomer is synthesized and its copolymerization with a water‐solubility promoting comonomer is investigated. The electrochemical and solution characteristics of a corresponding polymer are studied in detail. With a coulombic efficiency of >99.8% in an aqueous redox flow battery setup at 60 °C, a cheap, robust system for use at elevated temperatures is presented. imag

    Ramsey interferometry with an atom laser

    Full text link
    We present results on a free-space atom interferometer operating on the first order magnetically insensitive |F=1,mF=0> -> |F=2,mF=0> transition of Bose-condensed 87Rb atoms. A pulsed atom laser is output-coupled from a Bose-Einstein condensate and propagates through a sequence of two internal state beam splitters, realized via coherent Raman transitions between the two interfering states. We observe Ramsey fringes with a visibility close to 100% and determine the current and the potentially achievable interferometric phase sensitivity. This system is well suited to testing recent proposals for generating and detecting squeezed atomic states.Comment: published version, 8 pages, 3 figure

    The IgCAM CLMP regulates expression of Connexin43 and Connexin45 in intestinal and ureteral smooth muscle contraction in mice

    Get PDF
    CAR-like membrane protein (CLMP), an immunoglobulin cell adhesion molecule (IgCAM), has been implicated in congenital short-bowel syndrome in humans, a condition with high mortality for which there is currently no cure. We therefore studied the function of CLMP in a Clmp-deficient mouse model. Although we found that the levels of mRNAs encoding Connexin43 or Connexin45 were not or were only marginally affected, respectively, by Clmp deficiency, the absence of CLMP caused a severe reduction of both proteins in smooth muscle cells of the intestine and of Connexin43 in the ureter. Analysis of calcium signaling revealed a disordered cell-cell communication between smooth muscle cells, which in turn induced an impaired and uncoordinated motility of the intestine and the ureter. Consequently, insufficient transport of chyme and urine caused a fatal delay to thrive, a high rate of mortality, and provoked a severe hydronephrosis in CLMP knockouts. Neurotransmission and the capability of smooth muscle cells to contract in ring preparations of the intestine were not altered. Physical obstructions were not detectable and an overall normal histology in the intestine as well as in the ureter was observed, except for a slight hypertrophy of smooth muscle layers. Deletion of Clmp did not lead to a reduced length of the intestine as shown for the human CLMP gene but resulted in gut malrotations. In sum, the absence of CLMP caused functional obstructions in the intestinal tract and ureter by impaired peristaltic contractions most likely due to a lack of gap-junctional communication between smooth muscle cells

    Growth inhibition in clonal subpopulations of a human epithelioid sarcoma cell line by retinoic acid and tumour necrosis factor alpha.

    Get PDF
    Epithelioid sarcoma is a highly malignant soft tissue tumour that is refractory to conventional chemotherapy and irradiation. Since permanent cell lines of this tumour are extremely rare, in vitro data on compounds with significant antiproliferative effects are still lacking. Therefore, we investigated the effects of retinoic acid (RA) and tumour necrosis factor alpha (TNF-alpha) on tumour cell proliferation of three different clonal subpopulations (GRU-1A, GRU-1B, GRU-1C) derived from the same human epithelioid sarcoma cell line, GRU-1. In GRU-1A both RA (P=0.01) and TNF-alpha (P=0.002) exhibited highly significant and dose-dependent growth inhibitory effects, which could further be increased by a combined application of both compounds (P<0.006). GRU-1B proved to be sensitive to RA (P=0.006), whereas no response to TNF-alpha was observed. GRU-1C was resistant to both RA and TNF-alpha. The antiproliferative effect of TNF-alpha was mediated by TNF receptor 1(TNF-R1) and correlated positively with both the number of TNF-R1 per cell and receptor affinity. No correlation was detected between RA-induced growth inhibition and the expression pattern of the RA receptors (RARs) RAR-alpha, RAR-beta, and RAR-gamma. Plating efficiency, however, could exclusively be reduced by RA in GRU-1B, the only cell line expressing RAR-alpha. Taken together, these data are the first showing significant antiproliferative effects in human epithelioid sarcoma by RA and TNF-alpha. Whereas the TNF-alpha response seems to depend on the expression of TNF-R1, no simple correlation could be found between RA sensitivity and the expression pattern of RARs
    corecore