1 research outputs found
On the equivalence of game and denotational semantics for the probabilistic mu-calculus
The probabilistic (or quantitative) modal mu-calculus is a fixed-point logic
de- signed for expressing properties of probabilistic labeled transition
systems (PLTS). Two semantics have been studied for this logic, both assigning
to every process state a value in the interval [0,1] representing the
probability that the property expressed by the formula holds at the state. One
semantics is denotational and the other is a game semantics, specified in terms
of two-player stochastic games. The two semantics have been proved to coincide
on all finite PLTS's, but the equivalence of the two semantics on arbitrary
models has been open in literature. In this paper we prove that the equivalence
indeed holds for arbitrary infinite models, and thus our result strengthens the
fruitful connection between denotational and game semantics. Our proof adapts
the unraveling or unfolding method, a general proof technique for proving
result of parity games by induction on their complexity