72,059 research outputs found
Recommended from our members
Evaluation of ECMWF medium-range ensemble forecasts of precipitation for river basins
Providing probabilistic forecasts using Ensemble Prediction Systems has become increasingly popular in both the meteorological and hydrological communities. Compared to conventional deterministic forecasts, probabilistic forecasts may provide more reliable forecasts of a few hours to a number of days ahead, and hence are regarded as better tools for taking uncertainties into consideration and hedging against weather risks. It is essential to evaluate performance of raw ensemble forecasts and their potential values in forecasting extreme hydro-meteorological events. This study evaluates ECMWF's medium-range ensemble forecasts of precipitation over the period 1 January 2008 to 30 September 2012 on a selected midlatitude large-scale river basin, the Huai river basin (ca. 270 000 km2) in central-east China. The evaluation unit is sub-basin in order to consider forecast performance in a hydrologically relevant way. The study finds that forecast performance varies with sub-basin properties, between flooding and non-flooding seasons, and with the forecast properties of aggregated time steps and lead times. Although the study does not evaluate any hydrological applications of the ensemble precipitation forecasts, its results have direct implications in hydrological forecasts should these ensemble precipitation forecasts be employed in hydrology
Approximation of conformal mappings using conformally equivalent triangular lattices
Consider discrete conformal maps defined on the basis of two conformally
equivalent triangle meshes, that is edge lengths are related by scale factors
associated to the vertices. Given a smooth conformal map , we show that it
can be approximated by such discrete conformal maps . In
particular, let be an infinite regular triangulation of the plane with
congruent triangles and only acute angles (i.e.\ ). We scale this
tiling by and approximate a compact subset of the domain of
with a portion of it. For small enough we prove that there exists a
conformally equivalent triangle mesh whose scale factors are given by
on the boundary. Furthermore we show that the corresponding discrete
conformal maps converge to uniformly in with error of
order .Comment: 14 pages, 3 figures; v2 typos corrected, revised introduction, some
proofs extende
A cusp electron gun for millimeter wave gyrodevices
The experimental results of a thermionic cusp electron gun, to drive millimeter and submillimeter wave harmonic gyrodevices, are reported in this paper. Using a "smooth" magnetic field reversal formed by two coils this gun generated an annular-shaped, axis-encircling electron beam with 1.5 A current, and an adjustable velocity ratio alpha of up to 1.56 at a beam voltage of 40 kV. The beam cross-sectional shape and transported beam current were measured by a witness plate technique and Faraday cup, respectively. These measured results were found to be in excellent agreement with the simulated results using the three-dimensional code MAGIC
Gauge fields, ripples and wrinkles in graphene layers
We analyze elastic deformations of graphene sheets which lead to effective
gauge fields acting on the charge carriers. Corrugations in the substrate
induce stresses, which, in turn, can give rise to mechanical instabilities and
the formation of wrinkles. Similar effects may take place in suspended graphene
samples under tension.Comment: contribution to the special issue of Solid State Communications on
graphen
Photoemission Spectroscopy and the Unusually Robust One Dimensional Physics of Lithium Purple Bronze
Temperature dependent photoemission spectroscopy in Li0.9Mo6O17 contributes
to evidence for one dimensional physics that is unusually robust. Three generic
characteristics of the Luttinger liquid are observed, power law behavior of the
k-integrated spectral function down to temperatures just above the
superconducting transition, k-resolved lineshapes that show holon and spinon
features, and quantum critical (QC) scaling in the lineshapes. Departures of
the lineshapes and the scaling from expectations in the Tomonaga Luttinger
model can be partially described by a phenomenological momentum broadening that
is presented and discussed. The possibility that some form of 1d physics
obtains even down to the superconducting transition temperature is assessed.Comment: submitted to JPCM, Special issue article "Physics in one dimension
- …