113 research outputs found
Superconductor-Insulator Transition in a Capacitively Coupled Dissipative Environment
We present results on disordered amorphous films which are expected to
undergo a field-tuned Superconductor-Insulator Transition.The addition of a
parallel ground plane in proximity to the film changes the character of the
transition.Although the screening effects expected from "dirty-boson" theories
are not evident,there is evidence that the ground plane couples a certain type
of dissipation into the system,causing a dissipation-induced phase
transition.The dissipation due to the phase transition couples similarly into
quantum phase transition systems such as superconductor-insulator transitions
and Josephson junction arrays.Comment: 4 pages, 4 figure
Crossover and scaling in a two-dimensional field-tuned superconductor
Using an analysis similar to that of Imry and Wortis, it is shown that the
apparent first order superconductor to metal transition, which has been claimed
to exist at low values of the magnetic field in a two-dimensional field-tuned
system at zero temperature,can be consistentlyinterpreted as a sharp crossover
from a strong superconductor to an inhomogeneous state, which is a weak
superconductor. The true zero-temperature superconductor to insulator
transition within the inhomogenous state is conjectured to be that of randomly
diluted XY model. An explaination of the observed finite temperature
approximate scaling of resistivity close to the critical point is speculated
within this model.Comment: 5 pages, 2 figures, corrected and modified according to referee
  Report
The Bose Metal: gauge field fluctuations and scaling for field tuned quantum phase transitions
In this paper, we extend our previous discussion of the Bose metal to the
field tuned case. We point out that the recent observation of the metallic
state as an intermediate phase between the superconductor and the insulator in
the field tuned experiments on MoGe films is in perfect consistency with the
Bose metal scenario. We establish a connection between general dissipation
models and gauge field fluctuations and apply this to a discussion of scaling
across the quantum phase boundaries of the Bose metallic state. Interestingly,
we find that the Bose metal scenario implies a possible {\em two} parameter
scaling for resistivity across the Bose metal-insulator transition, which is
remarkably consistent with the MoGe data. Scaling at the superconductor-metal
transition is also proposed, and a phenomenolgical model for the metallic state
is discussed. The effective action of the Bose metal state is described and its
low energy excitation spectrum is found to be .Comment: 15 pages, 1 figur
True Superconductivity in a 2D "Superconducting-Insulating" System
We present results on disordered amorphous films which are expected to
undergo a field-tuned Superconductor-Insulator Transition. Based on low-field
data and I-V characteristics, we find evidence of a low temperature
Metal-to-Superconductor transition. This transition is characterized by
hysteretic magnetoresistance and discontinuities in the I-V curves. The
metallic phase just above the transition is different from the "Fermi Metal"
before superconductivity sets in.Comment: 3 pages, 4 figure
Can Short-Range Interactions Mediate a Bose Metal Phase in 2D?
We show here based on a 1-loop scaling analysis that short-range interactions
are strongly irrelevant perturbations near the insulator-superconductor (IST)
quantum critical point. The lack of any proof that short-range interactions
mediate physics which is present only in strong coupling leads us to conclude
that short-range interactions are strictly irrelevant near the IST quantum
critical point. Hence, we argue that no new physics, such as the formation of a
uniform Bose metal phase can arise from an interplay between on-site and
nearest-neighbour interactions.Comment: 3 pages, 1 .eps file. SUbmitted to Phys. Rev. 
A Phase Glass is a Bose Metal: New Conducting State in 2D
In the quantum rotor model with random exchange interactions having a
non-zero mean, three phases, a 1) phase (Bose) glass, 2) superfluid, and 3)
Mott insulator, meet at a bi-critical point. We demonstrate that proximity to
the bi-critical point and the coupling between the energy landscape and the
dissipative degrees of freedom of the phase glass lead to a metallic state at
T=0. Consequently, the phase glass is unique in that it represents a concrete
example of a metallic state that is mediated by disorder, even in 2D. We
propose that the experimentally observed metallic phase which intervenes
between the insulator and the superconductor in a wide range of thin films is
in actuality a phase glass.Comment: 4 pages, 1 .eps figure, final version to appear in Phys. Rev. Let
The Field-Tuned Superconductor-Insulator Transition with and without Current Bias
The magnetic-field-tuned superconductor-insulator transition has been studied
in ultrathin Beryllium films quench-condensed near 20 K. In the zero-current
limit, a finite-size scaling analysis yields the scaling exponent product vz =
1.35 +/- 0.10 and a critical sheet resistance R_{c} of about 1.2R_{Q}, with
R_{Q} = h/4e^{2}. However, in the presence of dc bias currents that are smaller
than the zero-field critical currents, vz becomes 0.75 +/- 0.10. This new set
of exponents suggests that the field-tuned transitions with and without dc bias
currents belong to different universality classes.Comment: RevTex 4 pages, 4 figures, and 1 table minor change
Absence of a Zero Temperature Vortex Solid Phase in Strongly Disordered Superconducting Bi Films
We present low temperature measurements of the resistance in magnetic field
of superconducting ultrathin amorphous Bi films with normal state sheet
resistances, , near the resistance quantum, . For
, the tails of the resistive transitions show the thermally activated
flux flow signature characteristic of defect motion in a vortex solid with a
finite correlation length. When  exceeds , the tails become
non-activated. We conclude that in films where  there is no vortex
solid and, hence, no zero resistance state in magnetic field. We describe how
disorder induced quantum and/or mesoscopic fluctuations can eliminate the
vortex solid and also discuss implications for the magnetic-field-tuned
superconductor-insulator transition.Comment: REVTEX, 4 pages, 3 figure
Fluctuation Conductivity in Insulator-Superconductor Transitions with Dissipation
We analyze here the fluctuation conductivity in the vicinity of the critical
point in a 2D Josephson junction array shunted by an Ohmic resistor.We find
that at the Gaussian level, the conductivity acquires a logarithmic dependence
on  when the dissipation is sufficiently small. In the renormalized
classical regime, this logarithmic dependence gives rise to a leveling-off of
the resistivity at low to intermediate temperatures when fluctuations are
included. We show, however, that this trend does not persist to T=0 at which
point the resistivity vanishes. The possible relationship of the leveling of
the resistivity to the low temperature transport in granlar superconductors is
discussed.Comment: 4 page
On the existence of a Bose Metal at T=0
This paper aims to justify, at a microscopic level, the existence of a
two-dimensional Bose metal, i.e. a metallic phase made out of Cooper pairs at
T=0. To this end, we consider the physics of quantum phase fluctuations in
(granular) superconductors in the absence of disorder and emphasise the role of
two order parameters in the problem, viz. phase order and charge order. We
focus on the 2-d Bose Hubbard model in the limit of very large fillings, i.e. a
2-d array of Josephson junctions. We find that the algebra of phase
fluctuations is that of the Euclidean group  in this limit, and show
that the model is equivalent to two coupled XY models in (2+1)-d, one
corresponding to the phase degrees of freedom, and the other the charge degrees
of freedom. The Bose metal, then, is the phase in which both these degrees of
freedom are disordered(as a result of quantum frustration). We analyse the
model in terms of its topological excitations and suggest that there is a
strong indication that this state represents a surface of critical points, akin
to the gapless spin liquid states. We find a remarkable consistency of this
scenario with certain low-T_c thin film experiments.Comment: 16 pages, 2 figure
- …
