8 research outputs found

    Gaugino-Assisted Anomaly Mediation

    Get PDF
    We present a model of supersymmetry breaking mediated through a small extra dimension. Standard model matter multiplets and a supersymmetry-breaking (or ``hidden'') sector are confined to opposite four-dimensional boundaries while gauge multiplets live in the bulk. The hidden sector does not contain a singlet and the dominant contribution to gaugino masses is via anomaly-mediated supersymmetry breaking. Scalar masses get contributions from both anomaly mediation and a tiny hard breaking of supersymmetry by operators on the hidden-sector boundary. These operators contribute to scalar masses at one loop and in most of parameter space, their contribution dominates. Thus it is easy to make all squared scalar masses positive. As no additional fields or symmetries are required below the Planck scale, we consider this the simplest working model of anomaly mediation. The gaugino spectrum is left untouched and the phenomenology of the model is roughly similar to anomaly mediated supersymmetry breaking with a universal scalar mass added. We identify the main differences in the spectrum between this model and other approaches. We also discuss mechanisms for generating the mu term and constraints on additional bulk fields.Comment: LaTeX, 26 pages, 8 eps figure

    Fermion Masses and Gauge Mediated Supersymmetry Breaking from a Single U(1)

    Get PDF
    We present a supersymmetric model of flavor. A single U(1) gauge group is responsible for both generating the flavor spectrum and communicating supersymmetry breaking to the visible sector. The problem of Flavor Changing Neutral Currents is overcome, in part using an `Effective Supersymmetry' spectrum among the squarks, with the first two generations very heavy. All masses are generated dynamically and the theory is completely renormalizable. The model contains a simple Froggatt-Nielsen sector and communicates supersymmetry breaking via gauge mediation without requiring a separate messenger sector. By forcing the theory to be consistent with SU(5) Grand Unification, the model predicts a large tan beta and a massless up quark. While respecting the experimental bounds on CP violation in the K-system, the model leads to a large enhancement of CP violation in B-(B bar) mixing as well as in B decay amplitudes.Comment: LaTeX, 25 pages, 8 figure

    Supersymmetry Breaking through Transparent Extra Dimensions

    Get PDF
    We propose a new framework for mediating supersymmetry breaking through an extra dimension. It predicts positive scalar masses and solves the supersymmetric flavor problem. Supersymmetry breaks on a ``source'' brane that is spatially separated from a parallel brane on which the standard model matter fields and their superpartners live. The gauge and gaugino fields propagate in the bulk, the latter receiving a supersymmetry breaking mass from direct couplings to the source brane. Scalar masses are suppressed at the high scale but are generated via the renormalization group. We briefly discuss the spectrum and collider signals for a range of compactification scales.Comment: 20 page

    Phenomenology of flavor-mediated supersymmetry breaking

    Get PDF
    The phenomenology of a new economical SUSY model that utilizes dynamical SUSY breaking and gauge-mediation (GM) for the generation of the sparticle spectrum and the hierarchy of fermion masses is discussed. Similarities between the communication of SUSY breaking through a messenger sector, and the generation of flavor using the Froggatt-Nielsen (FN) mechanism are exploited, leading to the identification of vector-like messenger fields with FN fields, and the messenger U(1) as a flavor symmetry. An immediate consequence is that the first and second generation scalars acquire flavor-dependent masses, but do not violate FCNC bounds since their mass scale, consistent with effective SUSY, is of order 10 TeV. We define and advocate a minimal flavor-mediated model (MFMM), recently introduced in the literature, that successfully accommodates the small flavor-breaking parameters of the standard model using order one couplings and ratios of flavon field vevs. The mediation of SUSY breaking occurs via two-loop log-enhanced GM contributions, as well as several one-loop and two-loop Yukawa-mediated contributions for which we provide analytical expressions. The MFMM is parameterized by a small set of masses and couplings, with values restricted by several model constraints and experimental data. The next-to-lightest sparticle (NLSP) always has a decay length that is larger than the scale of a detector, and is either the lightest stau or the lightest neutralino. Similar to ordinary GM models, the best collider search strategies are, respectively, inclusive production of at least one highly ionizing track, or events with many taus plus missing energy. In addition, D^0 - \bar{D}^0 mixing is also a generic low energy signal. Finally, the dynamical generation of the neutrino masses is briefly discussed.Comment: 54 pages, LaTeX, 8 figure
    corecore