774 research outputs found
Characterization of extrasolar terrestrial planets from diurnal photometric variability
The detection of massive planets orbiting nearby stars has become almost
routine, but current techniques are as yet unable to detect terrestrial planets
with masses comparable to the Earth's. Future space-based observatories to
detect Earth-like planets are being planned. Terrestrial planets orbiting in
the habitable zones of stars-where planetary surface conditions are compatible
with the presence of liquid water-are of enormous interest because they might
have global environments similar to Earth's and even harbor life. The light
scattered by such a planet will vary in intensity and colour as the planet
rotates; the resulting light curve will contain information about the planet's
properties. Here we report a model that predicts features that should be
discernible in light curves obtained by low-precision photometry. For
extrasolar planets similar to Earth we expect daily flux variations up to
hundreds of percent, depending sensitively on ice and cloud cover. Qualitative
changes in surface or climate generate significant changes in the predicted
light curves. This work suggests that the meteorological variability and the
rotation period of an Earth-like planet could be derived from photometric
observations. Other properties such as the composition of the surface (e.g.,
ocean versus land fraction), climate indicators (for example ice and cloud
cover), and perhaps even signatures of Earth-like plant life could be
constrained or possibly, with further study, even uniquely determined.Comment: Published in Nature. 9 pages including 3 figure
Human skeletal muscle nitrate and nitrite in individuals with peripheral arterial disease: effect of inorganic nitrate supplementation and exercise
Skeletal muscle may act as a reservoir for N-oxides following inorganic nitrate supplementation. This idea is most intriguing in individuals with peripheral artery disease (PAD) who are unable to endogenously upregulate nitric oxide. This study analyzed plasma and skeletal muscle nitrate and nitrite concentrations along with exercise performance, prior to and following 12-weeks of exercise training combined with oral inorganic nitrate supplementation (EX+BR) or placebo (EX+PL) in participants with PAD. Non-supplemented, at baseline, there were no differences in plasma and muscle nitrate. For nitrite, muscle concentration was higher than plasma (+0.10 nmol.gâ1). After 12 -weeks, acute oral nitrate increased both plasma and muscle nitrate (455.04 and 121.14 nmol.gâ1, p < 0.01), which were correlated (r = 0.63, p < 0.01), plasma nitrate increase was greater than in muscle (p < 0.01). Nitrite increased in the plasma (1.01 nmol.gâ1, p < 0.05) but not in the muscle (0.22 nmol.gâ1) (p < 0.05 between compartments). Peak walk time (PWT) increased in both groups (PL + 257.6 s;BR + 315.0 s). Six-minute walk (6 MW) distance increased only in the (EX+BR) group (BR + 75.4 m). We report no substantial gradient of nitrate (or nitrite) from skeletal muscle to plasma, suggesting a lack of reservoir-like function in participants with PAD. Oral nitrate supplementation produced increases in skeletal muscle nitrate, but not skeletal muscle nitrite. The related changes in nitrate concentration between plasma and muscle suggests a potential for inter-compartmental nitrate âcommunicationâ. Skeletal muscle did not appear to play a role in within compartment nitrate reduction. Muscle nitrate and nitrite concentrations did not appear to contribute to exercise performance in patients with PAD
Gene rearrangement and Chernobyl related thyroid cancers
The increase in thyroid carcinoma post-Chernobyl has been largely confined to a specific subtype of papillary carcinoma (solid/follicular). This subtype is observed predominantly in children under 10 in unirradiated populations, but maintains a high frequency in those aged 10â15 from those areas exposed to fallout from the Chernobyl accident. The aim of this study was to link morphology with molecular biology. We examined 106 papillary carcinomas from children under the age of 15 at operation. All were examined for rearrangements of the RET oncogene by reverse transcription polymerase chain reaction (RT-PCR); a subset of these cases were also examined for mutations of the three ras oncogenes, exon 10 of the thyroid stimulating hormone receptor, associated more usually with a follicular rather than papillary morphology, and exons 5, 6, 7 and 8 of the p53 gene, commonly involved in undifferentiated thyroid carcinoma. Rearrangements of the RET oncogene were found in 44% of papillary carcinomas in which we studied fresh material; none of the tumours examined showed mutation in any of the other genes. The two rearrangements resulting from inversion of part of chromosome 10 (PTC1 and PTC3) accounted for the majority of RET rearrangements identified, with PTC1 being associated with papillary carcinomas of the classic and diffuse sclerosing variants and PTC3 with the solid/follicular variant. © 2000 Cancer Research Campaig
A cardinal role for cathepsin D in co-ordinating the host-mediated apoptosis of macrophages and killing of pneumococci
The bactericidal function of macrophages against pneumococci is enhanced by their apoptotic demise, which is controlled by the anti-apoptotic protein Mcl-1. Here, we show that lysosomal membrane permeabilization (LMP) and cytosolic translocation of activated cathepsin D occur prior to activation of a mitochondrial pathway of macrophage apoptosis. Pharmacological inhibition or knockout of cathepsin D during pneumococcal infection blocked macrophage apoptosis. As a result of cathepsin D activation, Mcl-1 interacted with its ubiquitin ligase Mule and expression declined. Inhibition of cathepsin D had no effect on early bacterial killing but inhibited the late phase of apoptosis-associated killing of pneumococci in vitro. Mice bearing a cathepsin D-/- hematopoietic system demonstrated reduced macrophage apoptosis in vivo, with decreased clearance of pneumococci and enhanced recruitment of neutrophils to control pulmonary infection. These findings establish an unexpected role for a cathepsin D-mediated lysosomal pathway of apoptosis in pulmonary host defense and underscore the importance of apoptosis-associated microbial killing to macrophage function
All-Optical Generation of Surface Plasmons in Graphene
27 pages, 12 figures, includes supplementary materialarXiv is an e-print service in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance and statistics.Here we present an all-optical plasmon coupling scheme, utilising the intrinsic nonlinear optical response of graphene. We demonstrate coupling of free-space, visible light pulses to the surface plasmons in a planar, un-patterned graphene sheet by using nonlinear wave mixing to match both the wavevector and energy of the surface wave. By carefully controlling the phase-matching conditions, we show that one can excite surface plasmons with a defined wavevector and direction across a large frequency range, with an estimated photon efficiency in our experiments approaching
Aftershock Sequences Modeled with 3-D Stress Heterogeneity and Rate-State Seismicity Equations: Implications for Crustal Stress Estimation
In this paper, we present a model for studying aftershock sequences that integrates Coulomb static stress change analysis, seismicity equations based on rate-state friction nucleation of earthquakes, slip of geometrically complex faults, and fractal-like, spatially heterogeneous models of crustal stress. In addition to modeling instantaneous aftershock seismicity rate patterns with initial clustering on the Coulomb stress increase areas and an approximately 1/t diffusion back to the pre-mainshock background seismicity, the simulations capture previously unmodeled effects. These include production of a significant number of aftershocks in the traditional Coulomb stress shadow zones and temporal changes in aftershock focal mechanism statistics. The occurrence of aftershock stress shadow zones arises from two sources. The first source is spatially heterogeneous initial crustal stress, and the second is slip on geometrically rough faults, which produces localized positive Coulomb stress changes within the traditional stress shadow zones. Temporal changes in simulated aftershock focal mechanisms result in inferred stress rotations that greatly exceed the true stress rotations due to the main shock, even for a moderately strong crust (mean stress 50 MPa) when stress is spatially heterogeneous. This arises from biased sampling of the crustal stress by the synthetic aftershocks due to the non-linear dependence of seismicity rates on stress changes. The model indicates that one cannot use focal mechanism inversion rotations to conclusively demonstrate low crustal strength (â€10 MPa); therefore, studies of crustal strength following a stress perturbation may significantly underestimate the mean crustal stress state for regions with spatially heterogeneous stress
MT1-MMP regulates urothelial cell invasion via transcriptional regulation of Dickkopf-3
Membrane type-1 matrix metalloproteinase (MT1-MMP) is a zinc-binding endopeptidase, which plays a crucial role in tumour growth, invasion and metastasis. We have shown previously that MT1-MMP has higher expression levels in the human urothelial cell carcinoma (UCC) tissue. We show here that siRNA against MT1-MMP blocks invasion in UCC cell lines. Invasion is also blocked by broad-spectrum protease and MMP inhibitors including tissue inhibitor of metalloproteinase-1 and -2. Membrane type-1-MMP can also regulate transcription. We have used expression arrays to identify genes that are differentially transcribed when siRNA is used to suppress MT1-MMP expression. Upon MT1-MMP knockdown, Dickkopf-3 (DKK3) expression was highly upregulated. The stability of DKK3 mRNA was unaffected under these conditions, suggesting transcriptional regulation of DKK3 by MT1-MMP. Dickkopf-3 has been previously shown to inhibit invasion. We confirm that the overexpression of DKK3 leads to decreased invasive potential as well as delayed wound healing. We show for the first time that the effects of MT1-MMP on cell invasion are mediated in part through changes in DKK3 gene transcription
Optimisation of NMR dynamic models I. Minimisation algorithms and their performance within the model-free and Brownian rotational diffusion spaces
The key to obtaining the model-free description of the dynamics of a macromolecule is the optimisation of the model-free and Brownian rotational diffusion parameters using the collected R1, R2 and steady-state NOE relaxation data. The problem of optimising the chi-squared value is often assumed to be trivial, however, the long chain of dependencies required for its calculation complicates the model-free chi-squared space. Convolutions are induced by the Lorentzian form of the spectral density functions, the linear recombinations of certain spectral density values to obtain the relaxation rates, the calculation of the NOE using the ratio of two of these rates, and finally the quadratic form of the chi-squared equation itself. Two major topological features of the model-free space complicate optimisation. The first is a long, shallow valley which commences at infinite correlation times and gradually approaches the minimum. The most severe convolution occurs for motions on two timescales in which the minimum is often located at the end of a long, deep, curved tunnel or multidimensional valley through the space. A large number of optimisation algorithms will be investigated and their performance compared to determine which techniques are suitable for use in model-free analysis. Local optimisation algorithms will be shown to be sufficient for minimisation not only within the model-free space but also for the minimisation of the Brownian rotational diffusion tensor. In addition the performance of the programs Modelfree and Dasha are investigated. A number of model-free optimisation failures were identified: the inability to slide along the limits, the singular matrix failure of the LevenbergâMarquardt minimisation algorithm, the low precision of both programs, and a bug in Modelfree. Significantly, the singular matrix failure of the LevenbergâMarquardt algorithm occurs when internal correlation times are undefined and is greatly amplified in model-free analysis by both the grid search and constraint algorithms. The program relax (http://www.nmr-relax.com) is also presented as a new software package designed for the analysis of macromolecular dynamics through the use of NMR relaxation data and which alleviates all of the problems inherent within model-free analysis
More mentoring needed? A cross-sectional study of mentoring programs for medical students in Germany
<p>Abstract</p> <p>Background</p> <p>Despite increasing recognition that mentoring is essential early in medical careers, little is known about the prevalence of mentoring programs for medical students. We conducted this study to survey all medical schools in Germany regarding the prevalence of mentoring programs for medical students as well as the characteristics, goals and effectiveness of these programs.</p> <p>Methods</p> <p>A definition of mentoring was established and program inclusion criteria were determined based on a review of the literature. The literature defined mentoring as a steady, long-lasting relationship designed to promote the mentee's overall development. We developed a questionnaire to assess key characteristics of mentoring programs: the advocated mentoring model, the number of participating mentees and mentors, funding and staff, and characteristics of mentees and mentors (e.g., level of training). In addition, the survey characterized the mentee-mentor relationship regarding the frequency of meetings, forms of communication, incentives for mentors, the mode of matching mentors and mentees, and results of program evaluations. Furthermore, participants were asked to characterize the aims of their programs. The questionnaire consisted of 34 questions total, in multiple-choice (17), numeric (7) and free-text (10) format. This questionnaire was sent to deans and medical education faculty in Germany between June and September 2009. For numeric answers, mean, median, and standard deviation were determined. For free-text items, responses were coded into categories using qualitative free text analysis.</p> <p>Results</p> <p>We received responses from all 36 medical schools in Germany. We found that 20 out of 36 medical schools in Germany offer 22 active mentoring programs with a median of 125 and a total of 5,843 medical students (6.9 - 7.4% of all German medical students) enrolled as mentees at the time of the survey. 14 out of 22 programs (63%) have been established within the last 2 years. Six programs (27%) offer mentoring in a one-on-one setting. 18 programs (82%) feature faculty physicians as mentors. Nine programs (41%) involve students as mentors in a peer-mentoring setting. The most commonly reported goals of the mentoring programs include: establishing the mentee's professional network (13 programs, 59%), enhancement of academic performance (11 programs, 50%) and counseling students in difficulties (10 programs, 45%).</p> <p>Conclusions</p> <p>Despite a clear upsurge of mentoring programs for German medical students over recent years, the overall availability of mentoring is still limited. The mentoring models and goals of the existing programs vary considerably. Outcome data from controlled studies are needed to compare the efficiency and effectiveness of different forms of mentoring for medical students.</p
- âŠ