735 research outputs found
Reconstruction of the two-dimensional gravitational potential of galaxy clusters from X-ray and Sunyaev-Zel'dovich measurements
The mass of galaxy clusters is not a direct observable, nonetheless it is
commonly used to probe cosmological models. Based on the combination of all
main cluster observables, that is, the X-ray emission, the thermal
Sunyaev-Zel'dovich (SZ) signal, the velocity dispersion of the cluster
galaxies, and gravitational lensing, the gravitational potential of galaxy
clusters can be jointly reconstructed. We derive the two main ingredients
required for this joint reconstruction: the potentials individually
reconstructed from the observables and their covariance matrices, which act as
a weight in the joint reconstruction. We show here the method to derive these
quantities. The result of the joint reconstruction applied to a real cluster
will be discussed in a forthcoming paper. We apply the Richardson-Lucy
deprojection algorithm to data on a two-dimensional (2D) grid. We first test
the 2D deprojection algorithm on a -profile. Assuming hydrostatic
equilibrium, we further reconstruct the gravitational potential of a simulated
galaxy cluster based on synthetic SZ and X-ray data. We then reconstruct the
projected gravitational potential of the massive and dynamically active cluster
Abell 2142, based on the X-ray observations collected with XMM-Newton and the
SZ observations from the Planck satellite. Finally, we compute the covariance
matrix of the projected reconstructed potential of the cluster Abell 2142 based
on the X-ray measurements collected with XMM-Newton. The gravitational
potentials of the simulated cluster recovered from synthetic X-ray and SZ data
are consistent, even though the potential reconstructed from X-rays shows
larger deviations from the true potential. Regarding Abell 2142, the projected
gravitational cluster potentials recovered from SZ and X-ray data reproduce
well the projected potential inferred from gravitational-lensing observations.
(abridged)Comment: accepted for publication in the journal A&
Taking nature into lab: biomineralization by heavy metal-resistant streptomycetes in soil
Biomineralization by heavy metal-resistant streptomycetes was tested to evaluate the potential influence on metal mobilities in soil. Thus, we designed an experiment adopting conditions from classical laboratory methods to natural conditions prevailing in metal-rich soils with media spiked with heavy metals, soil agar, and nutrientenriched or unamended soil incubated with the bacteria. As a result, all strains were able to form struvite minerals (MgNH4PO4 6H2O) on tryptic soy broth (TSB)-media supplemented with AlCl3, MnCl2 and CuSO4, as well as on soil agar. Some strains additionally formed struvite on nutrient-enriched contaminated and control soil, as well as on metal contaminated soil without addition of media components. In contrast, switzerite (Mn3(PO4)2 7H2O) was exclusively formed on minimal media spiked with MnCl2 by four heavy metal-resistant strains, and on nutrient-enriched control soil by one strain. Hydrated nickel hydrogen phosphate was only crystallized on complex media supplemented with NiSO4 by most strains. Thus, mineralization is a dominant property of streptomycetes, with different processes likely to occur under laboratory conditions and sub-natural to natural conditions. This new understanding might have implications for our understanding of biological metal resistance mechanisms. We assume that biogeochemical cycles, nutrient storage and metal resistance might be affected by formation and re-solubilization of minerals like struvite in soil at microscale
Effects of burn status and conditioning on colonization of wood by stream macroinvertebrates
The combination of changing climate and anthropogenic activities is increasing the
probability of fire around the world. When fires occur in riparian zones, associated tree mortality can add wood to streams directly, or wood may fall onto the forest floor and remain there for some time before moving into stream channels. Because wood provides critical structure for aquatic macroinvertebrates, our objectives were to assess the effects of wood burn status, conditioning, and their interaction on (1) aquatic taxa community composition; (2) taxa and functional diversities; and (3) trait affinities. We conducted a field experiment
using pieces of freshly-cut wood for which we first manipulated the burn status (burned,
unburned). We then manipulated conditioning status by placing pieces directly into streams (no conditioning), leaving other pieces in streams for a year (water conditioning), or on the forest floor for a year before submergence (soil conditioning). Analyses included distance based redundancy analysis and linear mixed-effects modeling. Our results demonstrated that changes in wood quality resulting from fire may not alter per se the structure of
macroinvertebrate communities. Conditioning status, however, had significant effects on
taxonomic composition, taxa and functional diversities, and trait affinities of wood
invertebrate communities. The terrestrial legacy of soil conditioning was clearly important in structuring macroinvertebrate assemblages. Furthermore, taxonomic and functional patterns of stream macroinvertebrate colonization were not substantially different between burned and
unburned wood, even after a year of incubation in the stream or on the forest floor. This is an
important finding for the research topic on how wildfire structures aquatic communities. This information can function as a guide for post-fire stream and riparian management operations taking ecosystem function into account
Quark-antiquark composite systems: the Bethe-Salpeter equation in the spectral-integration technique
The Bethe-Salpeter equations for the light-quark composite systems, q q-bar,
are written in terms of spectral integrals. For the q q-bar -mesons
characterized by the mass M, spin J and radial quantum number n, the equations
are presented for the following (n,M^2)-trajectories: pi_J, eta_J, a_J, f_J,
rho_J, omega_J, h_J and b_J.Comment: 42 pages, 5 figures, typos correcte
Combining sediment source tracing techniques with traditional monitoring to assess the impact of improved land management on catchment sediment yields
Summary This paper aims to demonstrate the potential value of combining sediment source tracing techniques with traditional monitoring approaches, when documenting the impact of improved land management on catchment sediment yields. It reports the results of an investigation undertaken in a small (1.19 km 2 ) agricultural catchment in southern Brazil, which was monitored before and after the implementation of improved land management practices. Attention focussed on 50 storm events that occurred between May 2002 and March 2006 and which reflected the behaviour of the catchment during the pre-change, transition and post-change periods. Improved land management, involving minimum-till cultivation and the maintenance of good crop cover, was introduced in early 2003. The traditional monitoring provided a basis for evaluating the changes in storm runoff volume, storm hydrograph peak and storm-period sediment load and mean suspended sediment concentration. The results indicate that both storm runoff volumes and peak flows associated with a given amount of rainfall provided evidence of a significant decrease after the introduction of improved land management. Storm-period sediment loads showed a similar reduction, with a reduction by as much as 80% for low magnitude events and of ca. 40% for events of intermediate magnitude. However, there was no significant change in mean suspended sediment concentrations, indicating that the reductions in sediment load were primarily the result of the reduced storm runoff volume. Sediment source fingerprinting was used to explore the changes in the relative and absolute contributions to the storm sediment loads from the three key sources, Journal of Hydrology (2008) 348, 546-563 a v a i l a b l e a t w w w . s c i e n c e d i r e c t . c o m j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / j h y d r o l namely the surface of the fields under crops, the unpaved roads and the stream channels. A comparison of the load-weighted mean contributions for the pre-and post-treatment periods indicated that the contribution from the field surfaces and unpaved roads decreased from 63% and 36% to 54% and 24%, respectively, whereas the contribution from the stream channels increased from ca. 2% to 22%. By relating the absolute amounts of sediment mobilised from each individual source group to variables representing the runoff and precipitation associated with the events, it was possible to identify changes in the response of the individual sediment sources to the changes in land management that occurred within the catchment. Sediment mobilisation from the stream channel during individual events increased substantially over the whole range of flows after the introduction of improved land management in the study catchment, whereas the amounts of sediment mobilised from the surfaces of the fields and the unpaved roads showed a significant decrease during events of low and intermediate magnitude. The short monitoring period associated with the study, coupled with inter-annual variations in rainfall, necessarily limit the scope and rigour of the study reported, but it is seen to provide a useful demonstration of how the coupling of sediment source tracing with more traditional monitoring techniques can provide an improved understanding of the impact of improved management practices on the sediment response of a catchment, as well as important information to inform the design and implementation of effective sediment management and control measures.
Evidence for Ubiquitous, High-EW Nebular Emission in z~7 Galaxies: Towards a Clean Measurement of the Specific Star Formation Rate using a Sample of Bright, Magnified Galaxies
Growing observational evidence now indicates that nebular line emission has a
significant impact on the rest-frame optical fluxes of z~5-7 galaxies observed
with Spitzer. This line emission makes z~5-7 galaxies appear more massive, with
lower specific star formation rates. However, corrections for this line
emission have been very difficult to perform reliably due to huge uncertainties
on the overall strength of such emission at z>~5.5. Here, we present the most
direct observational evidence yet for ubiquitous high-EW [OIII]+Hbeta line
emission in Lyman-break galaxies at z~7, while also presenting a strategy for
an improved measurement of the sSFR at z~7. We accomplish this through the
selection of bright galaxies in the narrow redshift window z~6.6-7.0 where the
IRAC 4.5 micron flux provides a clean measurement of the stellar continuum
light. Observed 4.5 micron fluxes in this window contrast with the 3.6 micron
fluxes which are contaminated by the prominent [OIII]+Hbeta lines. To ensure a
high S/N for our IRAC flux measurements, we consider only the brightest
(H_{160}<26 mag) magnified galaxies we have identified in CLASH and other
programs targeting galaxy clusters. Remarkably, the mean rest-frame optical
color for our bright seven-source sample is very blue, [3.6]-[4.5]=-0.9+/-0.3.
Such blue colors cannot be explained by the stellar continuum light and require
that the rest-frame EW of [OIII]+Hbeta be greater than 637 Angstroms for the
average source. The bluest four sources from our seven-source sample require an
even more extreme EW of 1582 Angstroms. Our derived lower limit for the mean
[OIII]+Hbeta EW could underestimate the true EW by ~2x based on a simple
modeling of the redshift distribution of our sources. We can also set a robust
lower limit of >~4 Gyr^-1 on the specific star formation rates based on the
mean SED for our seven-source sample. (abridged)Comment: 9 pages, 6 figures, 1 table, submitted to the Astrophysical Journa
A Census of Star-Forming Galaxies in the z~9-10 Universe based on HST+Spitzer Observations Over 19 CLASH clusters: Three Candidate z~9-10 Galaxies and Improved Constraints on the Star Formation Rate Density at z~9
We utilise a two-color Lyman-Break selection criterion to search for z~9-10
galaxies over the first 19 clusters in the CLASH program. A systematic search
yields three z~9-10 candidates. While we have already reported the most robust
of these candidates, MACS1149-JD, two additional z~9 candidates are also found
and have H_{160}-band magnitudes of ~26.2-26.9. A careful assessment of various
sources of contamination suggests <~1 contaminants for our z~9-10 selection. To
determine the implications of these search results for the LF and SFR density
at z~9, we introduce a new differential approach to deriving these quantities
in lensing fields. Our procedure is to derive the evolution by comparing the
number of z~9-10 galaxy candidates found in CLASH with the number of galaxies
in a slightly lower redshift sample (after correcting for the differences in
selection volumes), here taken to be z~8. This procedure takes advantage of the
fact that the relative volumes available for the z~8 and z~9-10 selections
behind lensing clusters are not greatly dependent on the details of the lensing
models. We find that the normalization of the UV LF at z~9 is just
0.28_{-0.20}^{+0.39}\times that at z~8, ~1.4_{-0.8}^{+3.0}x lower than
extrapolating z~4-8 LF results. While consistent with the evolution in the UV
LF seen at z~4-8, these results marginally favor a more rapid evolution at z>8.
Compared to similar evolutionary findings from the HUDF, our result is less
insensitive to large-scale structure uncertainties, given our many independent
sightlines on the high-redshift universe.Comment: 22 pages, 11 figures, 5 tables, accepted for publication in the
Astrophysical Journal, updated to include the much deeper Spitzer/IRAC
observations over our three z~9-10 candidate
CLASH: A Census of Magnified Star-Forming Galaxies at z ~ 6-8
We utilize 16 band Hubble Space Telescope (HST) observations of 18 lensing
clusters obtained as part of the Cluster Lensing And Supernova survey with
Hubble (CLASH) Multi-Cycle Treasury program to search for galaxies.
We report the discovery of 204, 45, and 13 Lyman-break galaxy candidates at
, , and , respectively, identified from purely
photometric redshift selections. This large sample, representing nearly an
order of magnitude increase in the number of magnified star-forming galaxies at
presented to date, is unique in that we have observations in four
WFC3/UVIS UV, seven ACS/WFC optical, and all five WFC3/IR broadband filters,
which enable very accurate photometric redshift selections. We construct
detailed lensing models for 17 of the 18 clusters to estimate object
magnifications and to identify two new multiply lensed
candidates. The median magnifications over the 17 clusters are 4, 4, and 5 for
the , , and samples, respectively, over an average
area of 4.5 arcmin per cluster. We compare our observed number counts with
expectations based on convolving "blank" field UV luminosity functions through
our cluster lens models and find rough agreement down to mag, where we
begin to suffer significant incompleteness. In all three redshift bins, we find
a higher number density at brighter observed magnitudes than the field
predictions, empirically demonstrating for the first time the enhanced
efficiency of lensing clusters over field surveys. Our number counts also are
in general agreement with the lensed expectations from the cluster models,
especially at , where we have the best statistics.Comment: Accepted for publication in the Astrophysical Journal, 25 pages, 13
figures, 7 table
CLASH: Extending galaxy strong lensing to small physical scales with distant sources highly-magnified by galaxy cluster members
We present a strong lensing system in which a double source is imaged 5 times
by 2 early-type galaxies. We take advantage in this target of the multi-band
photometry obtained as part of the CLASH program, complemented by the
spectroscopic data of the VLT/VIMOS and FORS2 follow-up campaign. We use a
photometric redshift of 3.7 for the source and confirm spectroscopically the
membership of the 2 lenses to the galaxy cluster MACS J1206.2-0847 at redshift
0.44. We exploit the excellent angular resolution of the HST/ACS images to
model the 2 lenses in terms of singular isothermal sphere profiles and derive
robust effective velocity dispersions of (97 +/- 3) and (240 +/- 6) km/s. The
total mass distribution of the cluster is also well characterized by using only
the local information contained in this lensing system, that is located at a
projected distance of more than 300 kpc from the cluster luminosity center.
According to our best-fitting lensing and composite stellar population models,
the source is magnified by a total factor of 50 and has a luminous mass of
about (1.0 +/- 0.5) x 10^{9} M_{Sun}. By combining the total and luminous mass
estimates of the 2 lenses, we measure luminous over total mass fractions
projected within the effective radii of 0.51 +/- 0.21 and 0.80 +/- 0.32. With
these lenses we can extend the analysis of the mass properties of lens
early-type galaxies by factors that are about 2 and 3 times smaller than
previously done with regard to, respectively, velocity dispersion and luminous
mass. The comparison of the total and luminous quantities of our lenses with
those of astrophysical objects with different physical scales reveals the
potential of studies of this kind for investigating the internal structure of
galaxies. These studies, made possible thanks to the CLASH survey, will allow
us to go beyond the current limits posed by the available lens samples in the
field.Comment: 20 pages, 10 figures, accepted for publication in the Astrophysical
Journa
CLASH-VLT: The mass, velocity-anisotropy, and pseudo-phase-space density profiles of the z=0.44 galaxy cluster MACS 1206.2-0847
We use an unprecedented data-set of about 600 redshifts for cluster members,
obtained as part of a VLT/VIMOS large programme, to constrain the mass profile
of the z=0.44 cluster MACS J1206.2-0847 over the radial range 0-5 Mpc (0-2.5
virial radii) using the MAMPOSSt and Caustic methods. We then add external
constraints from our previous gravitational lensing analysis. We invert the
Jeans equation to obtain the velocity-anisotropy profiles of cluster members.
With the mass-density and velocity-anisotropy profiles we then obtain the first
determination of a cluster pseudo-phase-space density profile. The kinematics
and lensing determinations of the cluster mass profile are in excellent
agreement. This is very well fitted by a NFW model with mass M200=(1.4 +- 0.2)
10^15 Msun and concentration c200=6 +- 1, only slightly higher than theoretical
expectations. Other mass profile models also provide acceptable fits to our
data, of (slightly) lower (Burkert, Hernquist, and Softened Isothermal Sphere)
or comparable (Einasto) quality than NFW. The velocity anisotropy profiles of
the passive and star-forming cluster members are similar, close to isotropic
near the center and increasingly radial outside. Passive cluster members follow
extremely well the theoretical expectations for the pseudo-phase-space density
profile and the relation between the slope of the mass-density profile and the
velocity anisotropy. Star-forming cluster members show marginal deviations from
theoretical expectations. This is the most accurate determination of a cluster
mass profile out to a radius of 5 Mpc, and the only determination of the
velocity-anisotropy and pseudo-phase-space density profiles of both passive and
star-forming galaxies for an individual cluster [abridged]Comment: A&A in press; 22 pages, 19 figure
- âŠ