3,045 research outputs found
Work hardening behavior in a steel with multiple TRIP mechanisms
Transformation induced plasticity (TRIP) behavior was studied in steel with
composition Fe-0.07C-2.85Si-15.3Mn-2.4Al-0.017N that exhibited two TRIP
mechanisms. The initial microstructure consisted of both {\epsilon}- and
{\alpha}-martensites with 27% retained austenite. TRIP behavior in the first 5%
strain was predominately austenite transforming to {\epsilon}-martensite (Stage
I), but upon saturation of Stage I, the {\epsilon}-martensite transformed to
{\alpha}-martensite (Stage II). Alloy segregation also affected the TRIP
behavior with alloy rich regions producing TRIP just prior to necking. This
behavior was explained by first principle calculations that revealed aluminum
significantly affected the stacking fault energy in Fe-Mn-Al-C steels by
decreasing the unstable stacking fault energy and promoting easy nucleation of
{\epsilon}-martensite. The addition of aluminum also raised the intrinsic
stacking fault energy and caused the {\epsilon}-martensite to be unstable and
transform to {\alpha}-martensite under further deformation. The two stage TRIP
behavior produced a high strain hardening exponent of 1.4 and led to ultimate
tensile strength of 1165 MPa and elongation to failure of 35%.Comment: submitted to Met. Mater. Trans. A manuscript E-TP-12-953-
Magnetically Mediated Transparent Conductors: InO doped with Mo
First-principles band structure investigations of the electronic, optical and
magnetic properties of Mo-doped InO reveal the vital role of magnetic
interactions in determining both the electrical conductivity and the
Burstein-Moss shift which governs optical absorption. We demonstrate the
advantages of the transition metal doping which results in smaller effective
mass, larger fundamental band gap and better overall optical transmission in
the visible -- as compared to commercial Sn-doped InO. Similar behavior
is expected upon doping with other transition metals opening up an avenue for
the family of efficient transparent conductors mediated by magnetic
interactions
Composition-Dependent Structural and Transport Properties of Amorphous Transparent Conducting Oxides
Structural properties of amorphous In-based oxides, In-X-O with X=Zn, Ga, Sn, or Ge, are investigated using ab initio molecular dynamics liquid-quench simulations. The results reveal that indium retains its average coordination of 5.0 upon 20% X fractional substitution for In, whereas X cations satisfy their natural coordination with oxygen atoms. This finding suggests that the carrier generation is primarily governed by In atoms, in accord with the observed carrier concentration in amorphous In-O and In-X-O. At the same time, the presence of X affects the number of six-coordinated In atoms as well as the oxygen sharing between the InO6 polyhedra. Based on the obtained interconnectivity and spatial distribution of the InO6 and XOx polyhedra in amorphous In-X-O, composition-dependent structural models of the amorphous oxides are derived. The results help explain our Hall mobility measurements in In-X-O thin films grown by pulsed-laser deposition and highlight the importance of long-range structural correlations in the formation of amorphous oxides and their transport properties
Canted Ferromagnetism in Double Exchange Model with on-site Coulomb Repulsion
The double exchange model with on-site Coulomb repulsion is considered.
Schwinger-bosons representation of the localized spins is used and two
spin-singlet Fermion operators are introduced. In terms of the new Fermi fields
the on-site Hund's interaction is in a diagonal form and the true magnons of
the system are identified. The singlet fermions can be understood as electrons
dressed by a cloud of repeatedly emitted and reabsorbed magnons. Rewritten in
terms of Schwinger-bosons and spin-singlet fermions the theory is U(1) gauge
invariant. We show that spontaneous breakdown of the gauge symmetry leads to
\emph{\textbf{canted ferromagnetism with on-site spins of localized and
delocalized electrons misaligned}}. On-site canted phase emerges in double
exchange model when Coulomb repulsion is large enough. The quantum phase
transition between ferromagnetism and canted phase is studied varying the
Coulomb repulsion for different values of parameters in the theory such as
Hund's coupling and chemical potential.Comment: 8 pages, 6 figure
Screened-exchange Determination of the Electronic Properties of Monoclinic, Tetragonal and Cubic Zirconia
First-principles electronic band structure investigations of monoclinic, tetragonal, and cubic ZrO2 reveal the highly anisotropic nature of the conduction and valence band topologies in the monoclinic phase with electron and hole effective masses differing by over an order of magnitude in perpendicular directions. The planes of relatively high implied electron and hole mobilities intersect along a single crystallographic direction, making this the only direction readily available for exciton motion. Conversely, in the tetragonal and cubic phases, charge carrier effective masses are more isotropic and exciton motion is less restricted. These findings may explain recent experimental observations suggesting that exciton production via gamma irradiation in zirconia crystallites immersed in water is responsible for the accelerated dissociation of adsorbed water molecules on crystallite surfaces, and for the specificity of the effect to the tetragonal zirconia phase
Electric field gradients in s-, p- and d-metal diborides and the effect of pressure on the band structure and T in MgB
Results of FLMTO-GGA (full-potential linear muffin-tin orbital -- generalized
gradient approximation) calculations of the band structure and boron electric
field gradients (EFG) for the new medium-T superconductor (MTSC), MgB,
and related diborides MB, M=Be, Al, Sc, Ti, V, Cr, Mo and Ta are reported.
The boron EFG variations are found to be related to specific features of their
band structure and particularly to the M-B hybridization. The strong charge
anisotropy at the B site in MgB is completely defined by the valence
electrons - a property which sets MgB apart from other diborides. The boron
EFG in MgB is weakly dependent of applied pressure: the B p electron
anisotropy increases with pressure, but it is partly compensated by the
increase of core charge assymetry. The concentration of holes in bonding
bands is found to decrease slightly from 0.067 to 0.062 holes/B under
a pressure of 10 GPa. Despite a small decrease of N(E), the Hopfield
parameter increases with pressure and we believe that the main reason for the
reduction under pressure of the superconducting transition temperature, T,
is the strong pressure dependence of phonon frequencies, which is sufficient to
compensate the electronic effects.Comment: 12 pages, 3 figure
Combining high conductivity with complete optical transparency: A band-structure approach
A comparison of the structural, optical and electronic properties of the
recently discovered transparent conducting oxide (TCO), nanoporous Ca12Al14O33,
with those of the conventional TCO's (such as Sc-doped CdO) indicates that this
material belongs conceptually to a new class of transparent conductors. For
this class of materials, we formulate criteria for the successful combination
of high electrical conductivity with complete transparency in the visible
range. Our analysis suggests that this set of requirements can be met for a
group of novel materials called electrides.Comment: 3 pages, 3 figures, submitted for publicatio
Electronic band structure and carrier effective mass in calcium aluminates
First-principles electronic band structure investigations of five compounds
of the CaO-Al2O3 family, 3CaO.Al2O3, 12CaO.7Al2O3, CaO.Al2O3, CaO.2Al2O3 and
CaO.6Al2O3, as well as CaO and alpha-, theta- and kappa-Al2O3 are performed. We
find that the conduction band in the complex oxides is formed from the oxygen
antibonding p-states and, although the band gap in Al2O3 is almost twice larger
than in CaO, the s-states of both cations. Such a hybrid nature of the
conduction band leads to isotropic electron effective masses which are nearly
the same for all compounds investigated. This insensitivity of the effective
mass to variations in the composition and structure suggests that upon a proper
degenerate doping, both amorphous and crystalline phases of the materials will
possess mobile extra electrons
Structure peculiarities of cementite and their influence on the magnetic characteristics
The iron carbide is studied by the first-principle density functional
theory. It is shown that the crystal structure with the carbon disposition in a
prismatic environment has the lowest total energy and the highest energy of
magnetic anisotropy as compared to the structure with carbon in an octahedron
environment. This fact explains the behavior of the coercive force upon
annealing of the plastically deformed samples. The appearance of carbon atoms
in the octahedron environment can be revealed by Mossbauer experiment.Comment: 10 pages, 3 figures, 3 tables. submitted to Phys.Rev.
- …