447 research outputs found
Impurity-enhanced Aharonov-Bohm effect in neutral quantum-ring magnetoexcitons
We study the role of impurity scattering on the photoluminescence (PL)
emission of polarized magnetoexcitons. We consider systems where both the
electron and hole are confined on a ring structure (quantum rings) as well as
on a type-II quantum dot. Despite their neutral character, excitons exhibit
strong modulation of energy and oscillator strength in the presence of magnetic
fields. Scattering impurities enhance the PL intensity on otherwise "dark"
magnetic field windows and non-zero PL emission appears for a wide magnetic
field range even at zero temperature. For higher temperatures, impurity-induced
anticrossings on the excitonic spectrum lead to unexpected peaks and valleys on
the PL intensity as function of magnetic field. Such behavior is absent on
ideal systems and can account for prominent features in recent experimental
results.Comment: 7 pages, 7 figures, RevTe
A strategy to combine pathway-targeted low toxicity drugs in ovarian cancer.
Serous Ovarian Cancers (SOC) are frequently resistant to programmed cell death. However, here we describe that these programmed death-resistant cells are nonetheless sensitive to agents that modulate autophagy. Cytotoxicity is not dependent upon apoptosis, necroptosis, or autophagy resolution. A screen of NCBI yielded more than one dozen FDA-approved agents displaying perturbed autophagy in ovarian cancer. The effects were maximized via combinatorial use of the agents that impinged upon distinct points of autophagy regulation. Autophagosome formation correlated with efficacy in vitro and the most cytotoxic two agents gave similar effects to a pentadrug combination that impinged upon five distinct modulators of autophagy. However, in a complex in vivo SOC system, the pentadrug combination outperformed the best two, leaving trace or no disease and with no evidence of systemic toxicity. Targeting the autophagy pathway in a multi-modal fashion might therefore offer a clinical option for treating recalcitrant SOC
Coulomb interaction effects on the electronic structure of radial polarized excitons in nanorings
The electronic structure of radially polarized excitons in structured
nanorings is analyzed, with emphasis in the ground-state properties and their
dependence under applied magnetic fields perpendicular to the ring plane. The
electron-hole Coulomb attraction has been treated rigorously, through numerical
diagonalization of the full exciton Hamiltonian in the non-interacting
electron-hole pairs basis. Depending on the relative weight of the kinetic
energy and Coulomb contributions, the ground-state of polarized excitons has
"extended" or "localized" features. In the first case, corresponding to small
rings dominated by the kinetic energy, the ground-state shows Aharonov-Bohm
(AB) oscillations due to the individual orbits of the building particles of the
exciton. In the localized regime, corresponding to large rings dominated by the
Coulomb interaction, the only remaining AB oscillations are due to the magnetic
flux trapped between the electron and hole orbits. This dependence of the
exciton, a neutral excitation, on the flux difference confirms this feature as
a signature of Coulomb dominated polarized excitons. Analytical approximations
are provided in both regimens, which accurate reproduce the numerical results.Comment: 9 pages, including 6 figure
Red giant bound on the axion-electron coupling reexamined
If axions or other low-mass pseudoscalars couple to electrons (``fine
structure constant'' ) they are emitted from red giant stars by the
Compton process and by bremsstrahlung .
We construct a simple analytic expression for the energy-loss rate for all
conditions relevant for a red giant and include axion losses in evolutionary
calculations from the main sequence to the helium flash. We find that
\alpha_a\lapprox0.5\mn(-26) or m_a\lapprox 9\,\meV/\cos^2\beta lest the red
giant core at helium ignition exceed its standard mass by more than
0.025\,\MM_\odot, in conflict with observational evidence. Our bound is the
most restrictive limit on , but it does not exclude the possibility
that axion emission contributes significantly to the cooling of ZZ~Ceti stars
such as G117--B15A for which the period decrease was recently measured.Comment: 11 pages, uuencoded and compressed postscript fil
Supernova Ia: a Converging Delayed Detonation Wave
A model of a carbon-oxygen (C--O) presupernova core with an initial mass 1.33
M_\odot, an initial carbon mass fraction 0.27, and with an average mass
growth-rate 5 x 10^{-7} M_\odot/yr due to accretion in a binary system was
evolved from initial central density 10^9 g/cm^3, and temperature 2.05 x 10^8 K
through convective core formation and its subsequent expansion to the carbon
runaway at the center. The only thermonuclear reaction contained in the
equations of evolution and runaway was the carbon burning reaction 12C + 12C
with an energy release corresponding to the full transition of carbon and
oxygen (with the same rate as carbon) into 56Ni. As a parameter we take
\alpha_c - a ratio of a mixing length to the size of the convective zone. In
spite of the crude assumptions, we obtained a pattern of the runaway acceptable
for the supernova theory with the strong dependence of its duration on
\alpha_c. In the variants with large enough values of \alpha_c=4.0 x 10^{-3}
and 3.0 x 10^{-3} the fuel combustion occurred from the very beginning as a
prompt detonation. In the range of 2.0 x 10^{-3} >= \alpha_c >= 3.0 x 10^{-4}
the burning started as a deflagration with excitation of stellar pulsations
with growing amplitude. Eventually, the detonation set in, which was activated
near the surface layers of the presupernova (with m about 1.33 M_\odot) and
penetrated into the star down to the deflagration front. Excitation of model
pulsations and formation of a detonation front are described in detail for the
variant with \alpha_c=1.0 x 10^{-3}.Comment: 13 pages, 11 figures, to appear in Astronomy Letter
HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in UniProtKB/Swiss-Prot
The growth in the number of completely sequenced microbial genomes (bacterial and archaeal) has generated a need for a procedure that provides UniProtKB/Swiss-Prot-quality annotation to as many protein sequences as possible. We have devised a semi-automated system, HAMAP (High-quality Automated and Manual Annotation of microbial Proteomes), that uses manually built annotation templates for protein families to propagate annotation to all members of manually defined protein families, using very strict criteria. The HAMAP system is composed of two databases, the proteome database and the family database, and of an automatic annotation pipeline. The proteome database comprises biological and sequence information for each completely sequenced microbial proteome, and it offers several tools for CDS searches, BLAST options and retrieval of specific sets of proteins. The family database currently comprises more than 1500 manually curated protein families and their annotation templates that are used to annotate proteins that belong to one of the HAMAP families. On the HAMAP website, individual sequences as well as whole genomes can be scanned against all HAMAP families. The system provides warnings for the absence of conserved amino acid residues, unusual sequence length, etc. Thanks to the implementation of HAMAP, more than 200 000 microbial proteins have been fully annotated in UniProtKB/Swiss-Prot (HAMAP website: http://www.expasy.org/sprot/hamap)
Stellar evolution and modelling stars
In this chapter I give an overall description of the structure and evolution
of stars of different masses, and review the main ingredients included in
state-of-the-art calculations aiming at reproducing observational features. I
give particular emphasis to processes where large uncertainties still exist as
they have strong impact on stellar properties derived from large compilations
of tracks and isochrones, and are therefore of fundamental importance in many
fields of astrophysics.Comment: Lecture presented at the IVth Azores International Advanced School in
Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars
and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta,
Azores Islands, Portugal in July 201
Characterization of Sulfolobus islandicus rod-shaped virus 2 gp19, a single-strand specific endonuclease
The hyperthermophilic Sulfolobus islandicus rod-shaped virus 2 (SIRV2) encodes a 25-kDa protein (SIRV2gp19) annotated as a hypothetical protein with sequence homology to the RecB nuclease superfamily. Even though SIRV2gp19 homologs are conserved throughout the rudivirus family and presumably play a role in the viral life cycle, SIRV2gp19 has not been functionally characterized. To define the minimal requirements for activity, SIRV2gp19 was purified and tested under varying conditions. SIRV2gp19 is a single-strand specific endonuclease that requires Mg2+ for activity and is inactive on double-stranded DNA. A conserved aspartic acid in RecB nuclease superfamily Motif II (D89) is also essential for SIRV2gp19 activity and mutation to alanine (D89A) abolishes activity. Therefore, the SIRV2gp19 cleavage mechanism is similar to previously described RecB nucleases. Finally, SIRV2gp19 single-stranded DNA endonuclease activity could play a role in host chromosome degradation during SIRV2 lytic infection
Polarised Quark Distributions in the Nucleon from Semi-Inclusive Spin Asymmetries
We present a measurement of semi-inclusive spin asymmetries for positively
and negatively charged hadrons from deep inelastic scattering of polarised
muons on polarised protons and deuterons in the range 1
GeV. Compared to our previous publication on this subject, with the new
data the statistical errors have been reduced by nearly a factor of two.
From these asymmetries and our inclusive spin asymmetries we determine the
polarised quark distributions of valence quarks and non-strange sea quarks at
=10 GeV. The polarised valence quark distribution, , is positive and the polarisation increases with . The polarised
valence quark distribution, , is negative and the non-strange
sea distribution, , is consistent with zero over the measured
range of . We find for the first moments , and
, where we assumed
. We also determine for the first time the
second moments of the valence distributions .Comment: 17 page
What traits are carried on mobile genetic elements, and why?
Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes
- …