159 research outputs found

    Nonequilibrium fluctuation dissipation relations of interacting Brownian particles driven by shear

    Full text link
    We present a detailed analysis of the fluctuation dissipation theorem (FDT) close to the glass transition in colloidal suspensions under steady shear using mode coupling approximations. Starting point is the many-particle Smoluchowski equation. Under shear, detailed balance is broken and the response functions in the stationary state are smaller at long times than estimated from the equilibrium FDT. An asymptotically constant relation connects response and fluctuations during the shear driven decay, restoring the form of the FDT with, however, a ratio different from the equilibrium one. At short times, the equilibrium FDT holds. We follow two independent approaches whose results are in qualitative agreement. To discuss the derived fluctuation dissipation ratios, we show an exact reformulation of the susceptibility which contains not the full Smoluchowski operator as in equilibrium, but only its well defined Hermitian part. This Hermitian part can be interpreted as governing the dynamics in the frame comoving with the probability current. We present a simple toy model which illustrates the FDT violation in the sheared colloidal system.Comment: 21 pages, 13 figures, submitted to Phys. Rev.

    Analytical Results for a Hole in an Antiferromagnet

    Full text link
    The Green's function for a hole moving in an antiferromagnet is derived analytically in the long-wavelength limit. We find that the infrared divergence is eliminated in two and higher dimensions so that the quasiparticle weight is finite. Our results also suggest that the hole motion is polaronic in nature with a bandwidth proportional to t/Jexp[c(t/J)2]t/J \exp [-c (t/J)^2] (cc is a constant). The connection of the long-wavelength approximation to the first-order approximation in the cumulant expansion is also clarified.Comment: 12 papes, 2 figures available upon request, revte

    Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Janus kinase (JAK) family of tyrosine kinases includes JAK1, JAK2, JAK3 and TYK2, and is required for signaling through Type I and Type II cytokine receptors. CP-690,550 is a potent and selective JAK inhibitor currently in clinical trials for rheumatoid arthritis (RA) and other autoimmune disease indications. In RA trials, dose-dependent decreases in neutrophil counts (PBNC) were observed with CP-690,550 treatment. These studies were undertaken to better understand the relationship between JAK selectivity and PBNC decreases observed with CP-690,550 treatment.</p> <p>Methods</p> <p>Potency and selectivity of CP-690,550 for mouse, rat and human JAKs was evaluated in a panel of <it>in vitro </it>assays. The effect of CP-690,550 on granulopoiesis from progenitor cells was also assessed <it>in vitro </it>using colony forming assays. <it>In vivo </it>the potency of orally administered CP-690,550 on arthritis (paw edema), plasma cytokines, PBNC and bone marrow differentials were evaluated in the rat adjuvant-induced arthritis (AIA) model.</p> <p>Results</p> <p>CP-690,550 potently inhibited signaling through JAK1 and JAK3 with 5-100 fold selectivity over JAK2 in cellular assays, despite inhibiting all four JAK isoforms with nM potency in <it>in vitro </it>enzyme assays. Dose-dependent inhibition of paw edema was observed <it>in vivo </it>with CP-690,550 treatment. Plasma cytokines (IL-6 and IL-17), PBNC, and bone marrow myeloid progenitor cells were elevated in the context of AIA disease. At efficacious exposures, CP-690,550 returned all of these parameters to pre-disease levels. The plasma concentration of CP-690,550 at efficacious doses was above the <it>in vitro </it>whole blood IC50 of JAK1 and JAK3 inhibition, but not that of JAK2.</p> <p>Conclusion</p> <p>Results from this investigation suggest that CP-690,550 is a potent inhibitor of JAK1 and JAK3 with potentially reduced cellular potency for JAK2. In rat AIA, as in the case of human RA, PBNC were decreased at efficacious exposures of CP-690,550. Inflammatory end points were similarly reduced, as judged by attenuation of paw edema and cytokines IL-6 and IL-17. Plasma concentration at these exposures was consistent with inhibition of JAK1 and JAK3 but not JAK2. Decreases in PBNC following CP-690,550 treatment may thus be related to attenuation of inflammation and are likely not due to suppression of granulopoiesis through JAK2 inhibition.</p

    Scaling properties of the ferromagnetic state in the Hubbard model

    Full text link
    A numerical scaling analysis is used to show that Nagaoka's ferromagnetic state in two-dimensional Hubbard model with one hole is supersede by an antiferromagnetic (AF) state with a discontinuous jump in the total spin due to the AF coupling as the Hubbard UU is made finite. The same applies to the two-hole system, which has a spiral spin structure. We can show, via the scaling, that the crossover to an AF state is a precursor of a pathological coalescence of states having the minimum spin and Nagaoka's state at U=U=\infty in the thermodynamic limit.Comment: 10 pages, typeset in LATEX, KA-94-01, 3 figures available upon request at [email protected]

    The Hemopoietic Stem Cell Niche Versus the Microenvironment of the Multiple Myeloma-Tumor Initiating Cell

    Get PDF
    Multiple myeloma cells are reminiscent of hemopoietic stem cells in their strict dependence upon the bone marrow microenvironment. However, from all other points of view, multiple myeloma cells differ markedly from stem cells. The cells possess a mature phenotype and secrete antibodies, and have thus made the whole journey to maturity, while maintaining a tumor phenotype. Not much credence was given to the possibility that the bulk of plasma-like multiple myeloma tumor cells is generated from tumor-initiating cells. Although interleukin-6 is a major contributor to the formation of the tumor’s microenvironment in multiple myeloma, it is not a major factor within hemopoietic stem cell niches. The bone marrow niche for myeloma cells includes the activity of inflammatory cytokines released through osteoclastogenesis. These permit maintenance of myeloma cells within the bone marrow. In contrast, osteoclastogenesis constitutes a signal that drives hemopoietic stem cells away from their bone marrow niches. The properties of the bone marrow microenvironment, which supports myeloma cell maintenance and proliferation, is therefore markedly different from the characteristics of the hemopoietic stem cell niche. Thus, multiple myeloma presents an example of a hemopoietic tumor microenvironment that does not resemble the corresponding stem cell renewal niche

    Understanding the cancer stem cell

    Get PDF
    The last 15 years has seen an explosion of interest in the cancer stem cell (CSC). Although it was initially believed that only a rare population of stem cells are able to undergo self-renewing divisions and differentiate to form all populations within a malignancy, a recent work has shown that these cells may not be as rare as thought first, at least in some malignancies. Improved experimental models are beginning to uncover a less rigid structure to CSC biology, in which the concepts of functional plasticity and clonal evolution must be incorporated into the traditional models. Slowly the genetic programmes and biological processes underlying stem cell biology are being elucidated, opening the door to the development of drugs targeting the CSC. The aim of ongoing research to understand CSCs is to develop novel stem cell-directed treatments, which will reduce therapy resistance, relapse and the toxicity associated with current, non-selective agents

    Die Stoffwechselwirkungen der Schilddrüsenhormone

    Get PDF

    Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a global epidemic that poses a major challenge to health-care systems. Improving metabolic control to approach normal glycaemia (where practical) greatly benefits long-term prognoses and justifies early, effective, sustained and safety-conscious intervention. Improvements in the understanding of the complex pathogenesis of T2DM have underpinned the development of glucose-lowering therapies with complementary mechanisms of action, which have expanded treatment options and facilitated individualized management strategies. Over the past decade, several new classes of glucose-lowering agents have been licensed, including glucagon-like peptide 1 receptor (GLP-1R) agonists, dipeptidyl peptidase 4 (DPP-4) inhibitors and sodium/glucose cotransporter 2 (SGLT2) inhibitors. These agents can be used individually or in combination with well-established treatments such as biguanides, sulfonylureas and thiazolidinediones. Although novel agents have potential advantages including low risk of hypoglycaemia and help with weight control, long-term safety has yet to be established. In this Review, we assess the pharmacokinetics, pharmacodynamics and safety profiles, including cardiovascular safety, of currently available therapies for management of hyperglycaemia in patients with T2DM within the context of disease pathogenesis and natural history. In addition, we briefly describe treatment algorithms for patients with T2DM and lessons from present therapies to inform the development of future therapies
    corecore